Electrical Properties of Sustainable Nano-Composites Containing Nano-Fillers: Dielectric Properties and Electrical Conductivity

Author(s):  
Sabzoi Nizamuddin ◽  
Sabzoi Maryam ◽  
Humair Ahmed Baloch ◽  
M. T. H. Siddiqui ◽  
Pooja Takkalkar ◽  
...  
2019 ◽  
Vol 8 (1) ◽  
pp. 52-57 ◽  
Author(s):  
Dalal Hassan ◽  
Ahmed Hashim Ah-yasari

The preparation of (polystyrene-copper oxide) nanocomposites have been investigated for piezoelectric application. The copper oxide nanoparticles were added to polystyrene by different concentrations are (0, 4, 8 and 12) wt.%. The structural and A.C electrical properties of (PS-CuO) nanocomposites were studied. The results showed that the dielectric constant and dielectric loss of (PS-CuO) nanocomposites decrease with increase in frequency. The A.C electrical conductivity increases with increase in frequency. The dielectric constant, dielectric loss and A.C electrical conductivity of polystyrene increase with increase in copper oxide nanoparticles concentrations. The results of piezoelectric application showed that the electrical resistance of (PS-CuO) nanocomposites decreases with increase in pressure.


2019 ◽  
Vol 24 (6) ◽  
pp. 126
Author(s):  
Nawar Thamer Mohammed ◽  
Wasfi Mohammed Kadem

In this study (Cobalt oxide) nano powder prepared using sol-gel method with a crystallite size 22 nm By testing XRD  and by matching with card (JCPDS) files No.( 00-042-1467). Electrical and dielectric properties like (Dielectric constant, resistivity, electrical conductivity) are studied by LCR meter with frequency range from (50 Hz) to (5 MHz ). It was noted that the resistivity and dielectric constant was decreasing while electrical conductivity increased with increased  frequency    http://dx.doi.org/10.25130/tjps.24.2019.118  


2019 ◽  
Vol 3 (2) ◽  
pp. 85-97
Author(s):  
Vitaliy G. Shevchenko ◽  
Polina M. Nedorezova ◽  
Alexander N. Ozerin

Background:The paper describes the types and electrical properties of polymer nanocomposites containing carbon allotropes.Objective:Direct current conductivity, conduction in percolation systems, conduction mechanisms and factors controlling conductivity and percolation parameters are considered.Method:The dielectric properties of polymer nanocomposites are presented, and experimental methods and methods for analyzing the results have also been described. An analysis of the data on ac electrical conductivity, including the contribution of nanofiller - interfacial polarization is presented. Special consideration is given to the role of nanocarbons as dielectric probes.Results:The microwave properties of polymer nanocomposites, their use to estimate the distribution of nanofiller in the matrix, as well as practical applications for shielding and absorption of electromagnetic radiation have been analyzed.Conclusion:The use of carbon allotropes nanoparticles as fillers with high electrical conductivity provides polymer composites with useful electrical properties, including the ability to absorb highfrequency electromagnetic radiation.


2018 ◽  
Vol 1 (1) ◽  
pp. 26-31 ◽  
Author(s):  
B Babu ◽  
K Mohanraj ◽  
S Chandrasekar ◽  
N Senthil Kumar ◽  
B Mohanbabu

CdHgTe thin films were grown onto glass substrate via the Chemical bath deposition technique. XRD results indicate that a CdHgTe formed with a cubic polycrystalline structure. The crystallinity of CdHgTe thin films is gradually deteriorate with increasing the gamma irradiation. EDS spectrums confirms the presence of Cd, Hg and Te elements. DC electrical conductivity results depicted the conductivity of CdHgTe increase with increasing a gamma ray dosage


1990 ◽  
Vol 55 (12) ◽  
pp. 2933-2939 ◽  
Author(s):  
Hans-Hartmut Schwarz ◽  
Vlastimil Kůdela ◽  
Klaus Richau

Ultrafiltration cellulose acetate membrane can be transformed by annealing into reverse osmosis membranes (RO type). Annealing brings about changes in structural properties of the membranes, accompanied by changes in their permeability behaviour and electrical properties. Correlations between structure parameters and electrochemical properties are shown for the temperature range 20-90 °C. Relations have been derived which explain the role played by the dc electrical conductivity in the characterization of rejection ability of the membranes in the reverse osmosis, i.e. rRO = (1 + exp (A-B))-1, where exp A and exp B are statistically significant correlation functions of electrical conductivity and salt permeation, or of electrical conductivity and water flux through the membrane, respectively.


Author(s):  
Istebreq A. Saeedi ◽  
Sunny Chaudhary ◽  
Thomas Andritsch ◽  
Alun S. Vaughan

AbstractReactive molecular additives have often been employed to tailor the mechanical properties of epoxy resins. In addition, several studies have reported improved electrical properties in such systems, where the network architecture and included function groups have been modified through the use of so-called functional network modifier (FNM) molecules. The study reported here set out to investigate the effect of a glycidyl polyhedral oligomeric silsesquioxane (GPOSS) FNM on the cross-linking reactions, glass transition, breakdown strength and dielectric properties of an amine-cured epoxy resin system. Since many previous studies have considered POSS to act as an inorganic filler, a key aim was to consider the impact of GPOSS addition on the stoichiometry of curing. Fourier transform infrared spectroscopy revealed significant changes in the cross-linking reactions that occur if appropriate stoichiometric compensation is not made for the additional epoxide groups present on the GPOSS. These changes, in concert with the direct effect of the GPOSS itself, influence the glass transition temperature, dielectric breakdown behaviour and dielectric response of the system. Specifically, the work shows that the inclusion of GPOSS can result in beneficial changes in electrical properties, but that these gains are easily lost if consequential changes in the matrix polymer are not appropriately counteracted. Nevertheless, if the system is appropriately optimized, materials with pronounced improvements in technologically important characteristics can be designed.


RSC Advances ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 1531-1542
Author(s):  
Y. Marouani ◽  
J. Massoudi ◽  
M. Noumi ◽  
A. Benali ◽  
E. Dhahri ◽  
...  

The hexaferrite Ba1−xSrxFe12O19 compounds with x = 0, 0.5 and 1 were synthesized by the autocombustion method.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3294
Author(s):  
Jakkree Boonlakhorn ◽  
Jedsada Manyam ◽  
Pornjuk Srepusharawoot ◽  
Sriprajak Krongsuk ◽  
Prasit Thongbai

The effects of charge compensation on dielectric and electrical properties of CaCu3Ti4-x(Al1/2Ta1/4Nb1/4)xO12 ceramics (x = 0−0.05) prepared by a solid-state reaction method were studied based on the configuration of defect dipoles. A single phase of CaCu3Ti4O12 was observed in all ceramics with a slight change in lattice parameters. The mean grain size of CaCu3Ti4-x(Al1/2Ta1/4Nb1/4)xO12 ceramics was slightly smaller than that of the undoped ceramic. The dielectric loss tangent can be reduced by a factor of 13 (tanδ ~0.017), while the dielectric permittivity was higher than 104 over a wide frequency range. Impedance spectroscopy showed that the significant decrease in tanδ was attributed to the highly increased resistance of the grain boundary by two orders of magnitude. The DFT calculation showed that the preferential sites of Al and Nb/Ta were closed together in the Ti sites, forming self-charge compensation, and resulting in the enhanced potential barrier height at the grain boundary. Therefore, the improved dielectric properties of CaCu3Ti4-x(Al1/2Ta1/4Nb1/4)xO12 ceramics associated with the enhanced electrical properties of grain boundaries. In addition, the non-Ohmic properties were also improved. Characterization of the grain boundaries under a DC bias showed the reduction of potential barrier height at the grain boundary. The overall results indicated that the origin of the colossal dielectric properties was caused by the internal barrier layer capacitor structure, in which the Schottky barriers at the grain boundaries were formed.


RSC Advances ◽  
2015 ◽  
Vol 5 (94) ◽  
pp. 76783-76787 ◽  
Author(s):  
H. L. Wang ◽  
X. K. Ning ◽  
Z. J. Wang

Au–LaNiO3 (Au–LNO) nanocomposite films with 3.84 at% Au were firstly fabricated by one-step chemical solution deposition (CSD), and their electrical properties were investigated.


Sign in / Sign up

Export Citation Format

Share Document