Targeting of JAK-STAT Signaling in Breast Cancer: Therapeutic Strategies to Overcome Drug Resistance

Author(s):  
Sobia Tabassum ◽  
Rashda Abbasi ◽  
Nafees Ahmad ◽  
Ammad Ahmad Farooqi
2021 ◽  
Vol 12 ◽  
Author(s):  
Maoyu Xiao ◽  
Jun He ◽  
Liyang Yin ◽  
Xiguan Chen ◽  
Xuyu Zu ◽  
...  

Drug resistance is one of the most critical challenges in breast cancer (BC) treatment. The occurrence and development of drug resistance are closely related to the tumor immune microenvironment (TIME). Tumor-associated macrophages (TAMs), the most important immune cells in TIME, are essential for drug resistance in BC treatment. In this article, we summarize the effects of TAMs on the resistance of various drugs in endocrine therapy, chemotherapy, targeted therapy, and immunotherapy, and their underlying mechanisms. Based on the current overview of the key role of TAMs in drug resistance, we discuss the potential possibility for targeting TAMs to reduce drug resistance in BC treatment, By inhibiting the recruitment of TAMs, depleting the number of TAMs, regulating the polarization of TAMs and enhancing the phagocytosis of TAMs. Evidences in our review support it is important to develop novel therapeutic strategies to target TAMs in BC to overcome the treatment of resistance.


2021 ◽  
Vol 11 ◽  
Author(s):  
Qinghui Zheng ◽  
Mengdi Zhang ◽  
Fangfang Zhou ◽  
Long Zhang ◽  
Xuli Meng

Drug resistance is a major challenge in breast cancer (BC) treatment at present. Accumulating studies indicate that breast cancer stem cells (BCSCs) are responsible for the BC drugs resistance, causing relapse and metastasis in BC patients. Thus, BCSCs elimination could reverse drug resistance and improve drug efficacy to benefit BC patients. Consequently, mastering the knowledge on the proliferation, resistance mechanisms, and separation of BCSCs in BC therapy is extremely helpful for BCSCs-targeted therapeutic strategies. Herein, we summarize the principal BCSCs surface markers and signaling pathways, and list the BCSCs-related drug resistance mechanisms in chemotherapy (CT), endocrine therapy (ET), and targeted therapy (TT), and display therapeutic strategies for targeting BCSCs to reverse drug resistance in BC. Even more importantly, more attention should be paid to studies on BCSC-targeted strategies to overcome the drug resistant dilemma of clinical therapies in the future.


2020 ◽  
Vol 28 ◽  
Author(s):  
Fei Shao ◽  
Xiaonan Pang ◽  
Gyeong Hun Baeg

Abstract:: Breast cancer is the most common malignant tumor in women worldwide. Traditional ways of treatment, includ-ing radiotherapy and endocrine therapy, for breast cancer have inevitable side effects. In recent decades, targeted therapies for breast cancer have rapidly advanced and shown a promising future. The JAK/STAT signaling pathway has been shown to play important roles in tumorigenesis, maintenance and metastasis of breast cancer. Hence, many small molecule inhibi-tors of JAK and STAT proteins have been developed. These inhibitors exhibit potent inhibitory effects on breast cancer in both cellular and animal models, and even some of them have already been in clinical trials. This review article discussed the JAK/STAT signal transduction pathway in the pathogenesis of breast cancer, and the potential for the application of JAK/STAT inhibitors in breast cancer treatment.


2020 ◽  
Vol 16 (34) ◽  
pp. 2863-2878
Author(s):  
Yang Liu ◽  
Qian Du ◽  
Dan Sun ◽  
Ruiying Han ◽  
Mengmeng Teng ◽  
...  

Breast cancer is one of the leading causes of cancer-related deaths in women worldwide. Unfortunately, treatments often fail because of the development of drug resistance, the underlying mechanisms of which remain unclear. Circulating tumor DNA (ctDNA) is free DNA released into the blood by necrosis, apoptosis or direct secretion by tumor cells. In contrast to repeated, highly invasive tumor biopsies, ctDNA reflects all molecular alterations of tumors dynamically and captures both spatial and temporal tumor heterogeneity. Highly sensitive technologies, including personalized digital PCR and deep sequencing, make it possible to monitor response to therapies, predict drug resistance and tailor treatment regimens by identifying the genomic alteration profile of ctDNA, thereby achieving precision medicine. This review focuses on the current status of ctDNA biology, the technologies used to detect ctDNA and the potential clinical applications of identifying drug resistance mechanisms by detecting tumor-specific genomic alterations in breast cancer.


Oncotarget ◽  
2016 ◽  
Vol 7 (22) ◽  
pp. 32184-32199 ◽  
Author(s):  
Li Lv ◽  
Chunxia Liu ◽  
Chuxiong Chen ◽  
Xiaoxia Yu ◽  
Guanghui Chen ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 549
Author(s):  
Amal Qattan ◽  
Taher Al-Tweigeri ◽  
Wafa Alkhayal ◽  
Kausar Suleman ◽  
Asma Tulbah ◽  
...  

Resistance to therapy is a persistent problem that leads to mortality in breast cancer, particularly triple-negative breast cancer (TNBC). MiRNAs have become a focus of investigation as tissue-specific regulators of gene networks related to drug resistance. Circulating miRNAs are readily accessible non-invasive potential biomarkers for TNBC diagnosis, prognosis, and drug-response. Our aim was to use systems biology, meta-analysis, and network approaches to delineate the drug resistance pathways and clinical outcomes associated with circulating miRNAs in TNBC patients. MiRNA expression analysis was used to investigate differentially regulated circulating miRNAs in TNBC patients, and integrated pathway regulation, gene ontology, and pharmacogenomic network analyses were used to identify target genes, miRNAs, and drug interaction networks. Herein, we identified significant differentially expressed circulating miRNAs in TNBC patients (miR-19a/b-3p, miR-25-3p, miR-22-3p, miR-210-3p, miR-93-5p, and miR-199a-3p) that regulate several molecular pathways (PAM (PI3K/Akt/mTOR), HIF-1, TNF, FoxO, Wnt, and JAK/STAT, PD-1/PD-L1 pathways and EGFR tyrosine kinase inhibitor resistance (TKIs)) involved in drug resistance. Through meta-analysis, we demonstrated an association of upregulated miR-93, miR-210, miR-19a, and miR-19b with poor overall survival outcomes in TNBC patients. These results identify miRNA-regulated mechanisms of drug resistance and potential targets for combination with chemotherapy to overcome drug resistance in TNBC. We demonstrate that integrated analysis of multi-dimensional data can unravel mechanisms of drug-resistance related to circulating miRNAs, particularly in TNBC. These circulating miRNAs may be useful as markers of drug response and resistance in the guidance of personalized medicine for TNBC.


2020 ◽  
Vol 29 ◽  
pp. 096368972092998 ◽  
Author(s):  
Chuang Du ◽  
Yan Wang ◽  
Yingying Zhang ◽  
Jianhua Zhang ◽  
Linfeng Zhang ◽  
...  

Triple-negative breast cancer (TNBC) is one of the most aggressive cancer types with high recurrence, metastasis, and drug resistance. Recent studies report that long noncoding RNAs (lncRNAs)-mediated competing endogenous RNAs (ceRNA) play an important role in tumorigenesis and drug resistance of TNBC. Although elevated lncRNA DLX6 antisense RNA 1 (DLX6-AS1) has been observed to promote carcinogenesis in various cancers, the role in TNBC remained unclear. In this study, expression levels of DLX6-AS1 were increased in TNBC tissues and cell lines when compared with normal tissues or breast fibroblast cells which were determined by quantitative real-time PCR (RT-qPCR). Then, CCK-8 assay, cell colony formation assay and western blot were performed in CAL-51 cells transfected with siRNAs of DLX6-AS1 or MDA-MB-231 cells transfected with DLX6-AS1 over expression plasmids. Knock down of DLX6-AS1 inhibited cell proliferation, epithelial-mesenchymal transition (EMT), decreased expression levels of BCL2 apoptosis regulator (Bcl-2), Snail family transcriptional repressor 1 (Snail) as well as N-cadherin and decreased expression levels of cleaved caspase-3, γ-catenin as well as E-cadherin, while up regulation of DLX6-AS1 had the opposite effect. Besides, knockdown of DLX6-AS1 in CAL-51 cells or up regulation of DLX6-AS1 in MDA-MB-231 cells also decreased or increased cisplatin resistance of those cells analyzed by MTT assay. Moreover, by using dual luciferase reporter assay, RNA immunoprecipitation and RNA pull down assay, a ceRNA which was consisted by lncRNA DLX6-AS1, microRNA-199b-5p (miR-199b-5p) and paxillin (PXN) was identified. And DLX6-AS1 function through miR-199b-5p/PXN in TNBC cells. Finally, results of xenograft experiments using nude mice showed that DLX6-AS1 regulated cell proliferation, EMT and cisplatin resistance by miR-199b-5p/PXN axis in vivo. In brief, DLX6-AS1 promoted cell proliferation, EMT, and cisplatin resistance through miR-199b-5p/PXN signaling in TNBC in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document