Cell Biology of the Tardigrades: Current Knowledge and Perspectives

Author(s):  
K. Ingemar Jönsson ◽  
Ingvar Holm ◽  
Helena Tassidis
2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Takashi Yokoo ◽  
Kei Matsumoto ◽  
Shinya Yokote

Significant advances have been made in stem cell research over the past decade. A number of nonhematopoietic sources of stem cells (or progenitor cells) have been identified, including endothelial stem cells and neural stem cells. These discoveries have been a major step toward the use of stem cells for potential clinical applications of organ regeneration. Accordingly, kidney regeneration is currently gaining considerable attention to replace kidney dialysis as the ultimate therapeutic strategy for renal failure. However, due to anatomic complications, the kidney is believed to be the hardest organ to regenerate; it is virtually impossible to imagine such a complicated organ being completely rebuilt from pluripotent stem cells by gene or chemical manipulation. Nevertheless, several groups are taking on this big challenge. In this manuscript, current advances in renal stem cell research are reviewed and their usefulness for kidney regeneration discussed. We also reviewed the current knowledge of the emerging field of renal stem cell biology.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 235
Author(s):  
Bin Gu ◽  
Maxwell C. Hakun

NUT carcinoma (NC) is a type of aggressive cancer driven by chromosome translocations. Fusion genes between a DNA-binding protein, such as bromodomain and extraterminal domain (BET) proteins, and the testis-specific protein NUTM1 generated by these translocations drive the formation of NC. NC can develop in very young children without significant accumulation of somatic mutations, presenting a relatively clean model to study the genetic etiology of oncogenesis. However, after 20 years of research, a few challenging questions still remain for understanding the mechanism and developing therapeutics for NC. In this short review, we first briefly summarize the current knowledge regarding the molecular mechanism and targeted therapy development of NC. We then raise three challenging questions: (1) What is the cell of origin of NC? (2) How does the germline analogous epigenetic reprogramming process driven by the BET-NUTM1 fusion proteins cause NC? and (3) How will BET-NUTM1 targeted therapies be developed? We propose that with the unprecedented technological advancements in genome editing, animal models, stem cell biology, organoids, and chemical biology, we have unique opportunities to address these challenges.


2021 ◽  
Vol 12 ◽  
Author(s):  
Laura Kiekens ◽  
Wouter Van Loocke ◽  
Sylvie Taveirne ◽  
Sigrid Wahlen ◽  
Eva Persyn ◽  
...  

T-bet and Eomes are transcription factors that are known to be important in maturation and function of murine natural killer (NK) cells. Reduced T-BET and EOMES expression results in dysfunctional NK cells and failure to control tumor growth. In contrast to mice, the current knowledge on the role of T-BET and EOMES in human NK cells is rudimentary. Here, we ectopically expressed either T-BET or EOMES in human hematopoietic progenitor cells. Combined transcriptome, chromatin accessibility and protein expression analyses revealed that T-BET or EOMES epigenetically represses hematopoietic stem cell quiescence and non-NK lineage differentiation genes, while activating an NK cell-specific transcriptome and thereby drastically accelerating NK cell differentiation. In this model, the effects of T-BET and EOMES are largely overlapping, yet EOMES shows a superior role in early NK cell maturation and induces faster NK receptor and enhanced CD16 expression. T-BET particularly controls transcription of terminal maturation markers and epigenetically controls strong induction of KIR expression. Finally, NK cells generated upon T-BET or EOMES overexpression display improved functionality, including increased IFN-γ production and killing, and especially EOMES overexpression NK cells have enhanced antibody-dependent cellular cytotoxicity. Our findings reveal novel insights on the regulatory role of T-BET and EOMES in human NK cell maturation and function, which is essential to further understand human NK cell biology and to optimize adoptive NK cell therapies.


2018 ◽  
Vol 56 (1) ◽  
pp. 513-533 ◽  
Author(s):  
Jiejie Li ◽  
Christopher J. Staiger

The plant cytoskeleton is a dynamic framework of cytoplasmic filaments that rearranges as the needs of the cell change during growth and development. Incessant turnover mechanisms allow these networks to be rapidly redeployed in defense of host cytoplasm against microbial invaders. Both chemical and mechanical stimuli are recognized as danger signals to the plant, and these are perceived and transduced into cytoskeletal dynamics and architecture changes through a collection of well-recognized, previously characterized players. Recent advances in quantitative cell biology approaches, along with the powerful molecular genetics techniques associated with Arabidopsis, have uncovered two actin-binding proteins as key intermediaries in the immune response to phytopathogens and defense signaling. Certain bacterial phytopathogens have adapted to the cytoskeletal-based defense mechanism during the basal immune response and have evolved effector proteins that target actin filaments and microtubules to subvert transcriptional reprogramming, secretion of defense-related proteins, and cell wall–based defenses. In this review, we describe current knowledge about host cytoskeletal dynamics operating at the crossroads of the molecular and cellular arms race between microbes and plants.


2019 ◽  
Vol 43 (4) ◽  
pp. 341-361 ◽  
Author(s):  
Claudio Bussi ◽  
Maximiliano G Gutierrez

ABSTRACTTuberculosis (TB) caused by the bacterial pathogen Mycobacterium tuberculosis (Mtb) remains one of the deadliest infectious diseases with over a billion deaths in the past 200 years (Paulson 2013). TB causes more deaths worldwide than any other single infectious agent, with 10.4 million new cases and close to 1.7 million deaths in 2017. The obstacles that make TB hard to treat and eradicate are intrinsically linked to the intracellular lifestyle of Mtb. Mtb needs to replicate within human cells to disseminate to other individuals and cause disease. However, we still do not completely understand how Mtb manages to survive within eukaryotic cells and why some cells are able to eradicate this lethal pathogen. Here, we summarise the current knowledge of the complex host cell-pathogen interactions in TB and review the cellular mechanisms operating at the interface between Mtb and the human host cell, highlighting the technical and methodological challenges to investigating the cell biology of human host cell-Mtb interactions.


2019 ◽  
Vol 20 (18) ◽  
pp. 4411 ◽  
Author(s):  
Krüger-Genge ◽  
Blocki ◽  
Franke ◽  
Jung

The vascular endothelium, a monolayer of endothelial cells (EC), constitutes the inner cellular lining of arteries, veins and capillaries and therefore is in direct contact with the components and cells of blood. The endothelium is not only a mere barrier between blood and tissues but also an endocrine organ. It actively controls the degree of vascular relaxation and constriction, and the extravasation of solutes, fluid, macromolecules and hormones, as well as that of platelets and blood cells. Through control of vascular tone, EC regulate the regional blood flow. They also direct inflammatory cells to foreign materials, areas in need of repair or defense against infections. In addition, EC are important in controlling blood fluidity, platelet adhesion and aggregation, leukocyte activation, adhesion, and transmigration. They also tightly keep the balance between coagulation and fibrinolysis and play a major role in the regulation of immune responses, inflammation and angiogenesis. To fulfill these different tasks, EC are heterogeneous and perform distinctly in the various organs and along the vascular tree. Important morphological, physiological and phenotypic differences between EC in the different parts of the arterial tree as well as between arteries and veins optimally support their specified functions in these vascular areas. This review updates the current knowledge about the morphology and function of endothelial cells, particularly their differences in different localizations around the body paying attention specifically to their different responses to physical, biochemical and environmental stimuli considering the different origins of the EC.


Cancers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 941 ◽  
Author(s):  
Maike Kober-Hasslacher ◽  
Marc Schmidt-Supprian

Aberrant constitutive activation of Rel/NF-κB transcription factors is a hallmark of numerous cancers. Of the five Rel family members, c-Rel has the strongest direct links to tumorigenesis. c-Rel is the only member that can malignantly transform lymphoid cells in vitro. Furthermore, c-Rel is implicated in human B cell lymphoma through the frequent occurrence of REL gene locus gains and amplifications. In normal physiology, high c-Rel expression predominates in the hematopoietic lineage and a diverse range of stimuli can trigger enhanced expression and activation of c-Rel. Both expression and activation of c-Rel are tightly regulated on multiple levels, indicating the necessity to keep its functions under control. In this review we meta-analyze and integrate studies reporting gene locus aberrations to provide an overview on the frequency of REL gains in human B cell lymphoma subtypes, namely follicular lymphoma, diffuse large B cell lymphoma, primary mediastinal B cell lymphoma, and classical Hodgkin lymphoma. We also summarize current knowledge on c-Rel expression and protein localization in these human B cell lymphomas and discuss the co-amplification of BCL11A with REL. In addition, we highlight and illustrate key pathways of c-Rel activation and regulation with a specific focus on B cell biology.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Jaime M. Cyphert ◽  
Carol S. Trempus ◽  
Stavros Garantziotis

Hyaluronan signaling properties are unique among other biologically active molecules, that they are apparently not influenced by postsynthetic molecular modification, but by hyaluronan fragment size. This review summarizes the current knowledge about the generation of hyaluronan fragments of different size and size-dependent differences in hyaluronan signaling as well as their downstream biological effects.


2010 ◽  
Vol 1 (1) ◽  
pp. 67-83 ◽  
Author(s):  
Paweł Pasikowski ◽  
Marzena Cydzik ◽  
Alicja Kluczyk ◽  
Piotr Stefanowicz ◽  
Zbigniew Szewczuk

AbstractUbiquitin (Ub) is involved in many key processes of cell biology. Identification of compounds that could interfere in the ubiquitination process is of importance. It could be expected that peptides derived from the Ub-binding regions might be able to interact with Ub receptors themselves and modify an ability of the Ub receptors interactions. This review summarizes current knowledge about known Ub-derived peptides and discusses putative activity of unexplored Ub fragments. Among identified biologically active Ub-derived peptides, its decapeptide fragment of the LEDGRTLSDY sequence was found to exhibit strong immunosuppressive effects on the cellular and humoral immune responses, comparable to that of cyclosporine. Some of the Ub fragments possess strong antibacterial and antifungal potency. In the search for new peptides that could interfere in the interaction of Ub with other proteins, we investigated the pentapeptide Ub sequences present in non-ubiquitin proteins. Based on examination of the Swiss-Prot database, we postulated that sequences of some Ub fragments often exist in other protein molecules. However, some of those motives are represented more frequently than others and could be involved in regulation of cellular processes related to Ub.


2001 ◽  
Vol 14 (3) ◽  
pp. 584-640 ◽  
Author(s):  
José A. Vázquez-Boland ◽  
Michael Kuhn ◽  
Patrick Berche ◽  
Trinad Chakraborty ◽  
Gustavo Domı́nguez-Bernal ◽  
...  

SUMMARY The gram-positive bacterium Listeria monocytogenes is the causative agent of listeriosis, a highly fatal opportunistic foodborne infection. Pregnant women, neonates, the elderly, and debilitated or immunocompromised patients in general are predominantly affected, although the disease can also develop in normal individuals. Clinical manifestations of invasive listeriosis are usually severe and include abortion, sepsis, and meningoencephalitis. Listeriosis can also manifest as a febrile gastroenteritis syndrome. In addition to humans, L. monocytogenes affects many vertebrate species, including birds. Listeria ivanovii, a second pathogenic species of the genus, is specific for ruminants. Our current view of the pathophysiology of listeriosis derives largely from studies with the mouse infection model. Pathogenic listeriae enter the host primarily through the intestine. The liver is thought to be their first target organ after intestinal translocation. In the liver, listeriae actively multiply until the infection is controlled by a cell-mediated immune response. This initial, subclinical step of listeriosis is thought to be common due to the frequent presence of pathogenic L. monocytogenes in food. In normal indivuals, the continual exposure to listerial antigens probably contributes to the maintenance of anti-Listeria memory T cells. However, in debilitated and immunocompromised patients, the unrestricted proliferation of listeriae in the liver may result in prolonged low-level bacteremia, leading to invasion of the preferred secondary target organs (the brain and the gravid uterus) and to overt clinical disease. L. monocytogenes and L. ivanovii are facultative intracellular parasites able to survive in macrophages and to invade a variety of normally nonphagocytic cells, such as epithelial cells, hepatocytes, and endothelial cells. In all these cell types, pathogenic listeriae go through an intracellular life cycle involving early escape from the phagocytic vacuole, rapid intracytoplasmic multiplication, bacterially induced actin-based motility, and direct spread to neighboring cells, in which they reinitiate the cycle. In this way, listeriae disseminate in host tissues sheltered from the humoral arm of the immune system. Over the last 15 years, a number of virulence factors involved in key steps of this intracellular life cycle have been identified. This review describes in detail the molecular determinants of Listeria virulence and their mechanism of action and summarizes the current knowledge on the pathophysiology of listeriosis and the cell biology and host cell responses to Listeria infection. This article provides an updated perspective of the development of our understanding of Listeria pathogenesis from the first molecular genetic analyses of virulence mechanisms reported in 1985 until the start of the genomic era of Listeria research.


Sign in / Sign up

Export Citation Format

Share Document