Challenges in Applying Cross-Linked Laccase Aggregates in Bioremediation of Emerging Contaminants from Municipal Wastewater

Author(s):  
Arielle Farida Ariste ◽  
Hubert Cabana
Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 127 ◽  
Author(s):  
João Gomes ◽  
Danilo Frasson ◽  
Rosa Quinta-Ferreira ◽  
Ana Matos ◽  
Rui Martins

Water scarcity is one of the main problems of this century. Water reclamation appears as an alternative due to the reuse of treated wastewater. Therefore, effluents treatment technologies (activated sludge, rotary biological discs, percolating beds) must be improved since they are not able to remove emerging contaminants such as enteric pathogens (bacteria and virus). These pollutants are difficult to remove from the wastewater and lead to adverse consequences to human health. Advanced oxidation processes, such as single and catalytic ozonation, appear as suitable complements to conventional processes. Catalytic ozonation was carried out using a low-cost material, a volcanic rock. Single and catalytic ozonation were capable of promoting total Escherichia coli removal from municipal wastewater after 90 min of contact. The presence of volcanic rock increases disinfection efficiency since E. coli regrowth was not observed. The identified viruses (Norovirus genotype I and II and JC virus) were completely removed using catalytic ozonation, whereas single ozonation was not able to eliminate JC virus even after 150 min of treatment. The higher performance of the catalytic process can be explained by the formation of hydroxyl radicals, proving that disinfection occurs in the liquid bulk and not due to adsorption at the volcanic rock.


2016 ◽  
Vol 75 (2) ◽  
pp. 387-396 ◽  
Author(s):  
I. Reinholds ◽  
O. Muter ◽  
I. Pugajeva ◽  
J. Rusko ◽  
I. Perkons ◽  
...  

Pharmaceutical products (PPs) belong to emerging contaminants that may accumulate along with other chemical pollutants in wastewaters (WWs) entering industrial and/or urban wastewater treatment plants (WWTPs). In the present study, the technique of ultra-high-performance liquid chromatography coupled to Orbitrap high-resolution mass spectrometry (Orbitrap-HRMS) was applied for the analysis of 24 multi-class PPs in WW samples collected at different technological stages of Daugavgriva WWTP located in Riga, Latvia. Caffeine and acetaminophen levels in the range of 7,570–11,403 ng/L and 810–1,883 ng/L, respectively, were the predominant compounds among 19 PPs determined in the WW. The results indicate that aerobic digestion in biological ponds was insufficiently effective to degrade most of the PPs (reduction efficiency <0–50.0%) with the exception of four PPs that showed degradation efficiency varying from 55.0 to 99.9%. Tests of short-term chemical and enzymatic hydrolysis for PP degradation in WW samples were performed, and the results reflected the complexity of different degradation mechanisms and physicochemical transformations of PPs. The toxicological studies of WW impact on Daphnia magna indicated gradual reduction of the total toxicity through the treatment stages at the WWTP.


2020 ◽  
Vol 2 (1) ◽  
pp. 11-20
Author(s):  
Vasile Ion Iancu ◽  
Jana Petre ◽  
Toma Galaon ◽  
Gabriel Valentin Serban ◽  
Marcela Niculescu ◽  
...  

Emerging contaminants are a heterogeneous group of chemicals that include daily personal care products and pharmaceuticals (PPCPs), flame retardants, endocrine-disrupting chemicals (EDCs) and nanoparticles (NPs) present in environment which are unregulated. In this review, we present the methods of analysis conducted by INCD-ECOIND regarding some classes of emerging contaminants (neonicotinoid pesticides, beta-blocker drugs) that are not regulated by the legislation, in different types of environmental samples (wastewater, surface water). The present review presents the selective solid-phase extraction (SPE) methods used for isolation of the targeted compounds from aqueous matrices and also the main instrumental parameters of the separation and detection process. After extraction, the compounds were subjected to liquid phase chromatographic separation with mass spectrometric detection (UHPLC-MS/MS). Finally, the methods were applied in the determination of compounds from different categories of water, carrying out studies on the efficiency of elimination of compounds in several municipal wastewater treatment plants (WWTPs). In addition, the impact of the treatment plants on some receiving surface water used to obtain drinking water was studied.


2017 ◽  
Vol 75 (8) ◽  
pp. 1882-1888 ◽  
Author(s):  
Gordon C. C. Yang ◽  
Pei-Ling Tang ◽  
Chia-Heng Yen

In this work the optimal operating conditions for removing selected micropollutants (also known as emerging contaminants, ECs) from actual municipal wastewater by graphene adsorption (GA) and simultaneous electrocoagulation/electrofiltration (EC/EF) process, respectively, were first determined and evaluated. Then, performance and mechanisms for the removal of selected phthalates and pharmaceuticals from municipal wastewater simultaneously by the GA and EC/EF process were further assessed. ECs of concern included di-n-butyl phthalate (DnBP), di-(2-ethylhexyl) phthalate (DEHP), acetaminophen (ACE), caffeine (CAF), cefalexin (CLX) and sulfamethoxazole (SMX). It was found that GA plus EC/EF process yielded the following removal efficiencies: DnBP, 89 ± 2%; DEHP, 85 ± 3%; ACE, 99 ± 2%; CAF, 94 ± 3%; CLX, 100 ± 0%; and SMX, 98 ± 2%. Carbon adsorption, size exclusion, electrostatic repulsion, electrocoagulation, and electrofiltration were considered as the main mechanisms for the removal of target ECs by the integrated process indicated above.


2016 ◽  
Vol 73 (9) ◽  
pp. 2268-2274 ◽  
Author(s):  
Gordon C. C. Yang ◽  
Pei-Ling Tang

In this work graphene was used for evaluation of its adsorption behavior and performance in removing phthalate esters and pharmaceuticals in municipal wastewater. Di-n-butyl phthalate (DnBP), di-(2-ethylhexyl) phthalate (DEHP), acetaminophen (ACE), caffeine (CAF), cephalexin (CLX), and sulfamethoxazole (SMX) were emerging contaminants (ECs) with detection frequencies over 92% in a one-year monitoring of the occurrence of ECs in influent samples of a sewage treatment plant in Taiwan. Thus, these ECs were selected as the target contaminants for removal by graphene adsorption process. Experimental results showed that the adsorption isotherm data were fitted well to Langmuir model equation. It was also found that the adsorption process obeyed the pseudo-second-order kinetics. A graphene dosage of 0.1 g/L and adsorption time of 12 h were found to be the optimal operating conditions for the ECs of concern in model solutions in a preliminary study. By using the determined optimal operating conditions for removal of such ECs in actual municipal wastewater, removal efficiencies for various ECs were obtained and given as follows: (1) DnBP, 89%, (2) DEHP, 86%, (3) ACE, 43%, (4) CAF, 84%, (5) CLX, 81%, and (6) SMX, 34%.


2012 ◽  
Vol 239-240 ◽  
pp. 64-69 ◽  
Author(s):  
Davor Dolar ◽  
Meritxell Gros ◽  
Sara Rodriguez-Mozaz ◽  
Jordi Moreno ◽  
Joaquim Comas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document