scholarly journals High Stakes Decisions Under Uncertainty: Dams, Development and Climate Change in the Rufiji River Basin

2021 ◽  
pp. 93-113
Author(s):  
Christian Siderius ◽  
Robel Geressu ◽  
Martin C. Todd ◽  
Seshagiri Rao Kolusu ◽  
Julien J. Harou ◽  
...  

AbstractThe need to stress test designs and decisions about major infrastructure under climate change conditions is increasingly being recognised. This chapter explores new ways to understand and—if possible—reduce the uncertainty in climate information to enable its use in assessing decisions that have consequences across the water, energy, food and environment sectors. It outlines an approach, applied in the Rufiji River Basin in Tanzania, that addresses uncertainty in climate model projections by weighting them according to different skill metrics; how well the models simulate important climate features. The impact of different weighting approaches on two river basin performance indicators (hydropower generation and environmental flows) is assessed, providing an indication of the reliability of infrastructure investments, including a major proposed dam under different climate model projections. The chapter ends with a reflection on the operational context for applying such approaches and some of the steps taken to address challenges and to engage stakeholders.

2013 ◽  
Vol 17 (19) ◽  
pp. 1-22 ◽  
Author(s):  
G. T. Aronica ◽  
B. Bonaccorso

Abstract In recent years, increasing attention has been paid to hydropower generation, since it is a renewable, efficient, and reliable source of energy, as well as an effective tool to reduce the atmospheric concentrations of greenhouse gases resulting from human activities. At the same time, however, hydropower is among the most vulnerable industries to global warming, because water resources are closely linked to climate changes. Indeed, the effects of climate change on water availability are expected to affect hydropower generation with special reference to southern countries, which are supposed to face dryer conditions in the next decades. The aim of this paper is to qualitatively assess the impact of future climate change on the hydrological regime of the Alcantara River basin, eastern Sicily (Italy), based on Monte Carlo simulations. Synthetic series of daily rainfall and temperature are generated, based on observed data, through a first-order Markov chain and an autoregressive moving average (ARMA) model, respectively, for the current scenario and two future scenarios at 2025. In particular, relative changes in the monthly mean and standard deviation values of daily rainfall and temperature at 2025, predicted by the Hadley Centre Coupled Model, version 3 (HadCM3) for A2 and B2 greenhouse gas emissions scenarios, are adopted to generate future values of precipitation and temperature. Synthetic series for the two climatic scenarios are then introduced as input into the Identification of Unit Hydrographs and Component Flows from Rainfall, Evapotranspiration and Streamflow Data (IHACRES) model to simulate the hydrological response of the basin. The effects of climate change are investigated by analyzing potential modification of the resulting flow duration curves and utilization curves, which allow a site's energy potential for the design of run-of-river hydropower plants to be estimated.


2020 ◽  
Vol 15 (3) ◽  
pp. 172-183
Author(s):  
Gabriel Földes ◽  
Silvia Kohnová ◽  
Marija Mihaela Labat ◽  
Kamila Hlavčová

The paper focuses on the impact of climate change on runoff in the Ipoltica River basin in northern Slovakia. The analysis is divided into two parts: the first part contains an analysis of predicted changes in short-term rainfall intensities at the Liptovská Teplička climatological station; the second part is focused on the impact of runoff on a small mountainous river basin. The predicted short-term rainfall intensities were analyzed using the Community Land Model, which is a Regional Climate Model. The analysis was performed in durations of 60 to 1440 minutes for a warm period. The focus was aimed at comparing changes in rainfall characteristics, especially changes in seasonality, the scaling exponents, and design values. The second part focuses on the impact of changes in short-term rainfall on changes in runoff. The estimation of predicted runoff changes was provided for the period 2070 - 2100. These results were compared with the results from actual observations. The design floods were calculated using the Soil Conservation Service - Curve Number method. The results show that the runoff will be affected by climate change. Hence, it is important to reevaluate the land use management and practices at the Ipoltica River basin.


2021 ◽  
Vol 29 ◽  
pp. 107-121
Author(s):  
Priscila Esposte Coutinho ◽  
Marcio Cataldi

In the last century, changes in climate trends have been observed around the planet, which have resulted in alterations in the hydrological cycle. Studies that take into account the impact of climate change on water availability are of great importance, especially in Brazil’s case, where water from rivers, beyond being destined for human consumption, animal watering and economic activities, has a great participation in electricity generation. This fact makes its energy matrix vulnerable to variations in the climate system. In this study, a flow analysis for the head of the São Francisco river basin was performed between 2010 and 2100, considering the precipitation data of the CCSM4 climate model presented in the Fifth Assessment Report (AR5) from the Intergovernmental Panel on Climate Change (IPCC). Projections of future flow were performed for the scenarios RCP4.5 and RCP8.5, based on the SMAP rain-flow model, followed by a comparative analysis with the present climate. In general, we can observe that the decades of 2010 to 2100 will be marked by the high levels of precipitation, interspersed by long droughts, in which the recorded flow will be lower than the Long Term Average (LTA) calculated for the basin. Therefore, new management strategies must be considered to maintain the multiple uses of the basin.


2021 ◽  
Author(s):  
Jangho Lee ◽  
Andrew Dessler

The Electric Reliability Council of Texas (ERCOT) manages the electric power across most of Texas. They make short-term assessments of electricity demand based on historical weather over the last decade or two, thereby ignoring the effects of climate change and the possibility of weather variability outside of the recent historical range. In this paper, we develop an empirical methodology to predict the impact of weather on energy demand. We use that with a large ensemble of climate model runs to construct a probability distribution of power demand on the ERCOT grid for summer and winter 2021. We find that the ERCOT grid is running with no safety margin, particularly during summer. We estimate a 5% chance that maximum power demand would be within 4.3 and 7.9 GW of ERCOT’s estimate of best-case available resources during summer and winter 2021, respectively, and a 20% chance it would be within 7.1 and 17 GW. With such small margins, the unexpected reductions in available power can lead to shortages on the grid. This problem is partially hidden by the fact that ERCOTs seasonal assessments, based entirely on historical weather, are too low. Prior to the 2021 winter blackout, ERCOT forecasted an extreme peak load of 67 GW. In reality, we estimate hourly peak demand was 82 GW, 22% above ERCOT’s most extreme forecast and about equal to the best-case available power. Given the high stakes, ERCOT should develop probabilistic estimates using modern scientific tools to predict the range of power demand more accurately.


Author(s):  
Sarfaraz Alam ◽  
Md. Mostafa Ali ◽  
Ahmmed Zulfiqar Rahaman ◽  
Zahidul Islam

Abstract The streamflow of Brahmaputra River Basin is vital for sustainable socioeconomic development of the Ganges delta. Frequent floods and droughts in the past decades indicate the susceptibility of the region to climate variability. Although there are multiple studies investigating the basin's future water availability, most of those are based on limited climate change scenarios despite the wide range of uncertainties in different climate model projections. This study aims to provide a better estimation of projected future streamflow for a combination of 18 climate change scenarios. We develop a hydrologic model of the basin and simulate the future water availability based on these climate change scenarios. Our results show that the simulated mean annual, mean seasonal and annual maximum streamflow of the basin is expected to increase in future. By the end of the 21st century, the projected increase in mean annual, mean dry season, mean wet season, and annual maximum streamflow is about 25, 178, 11, and 22%, respectively. We also demonstrate that this projected streamflow can be expressed as a multivariate linear regression of projected changes in temperature and precipitation in the basin and would be very useful for policy makers to make informed decision regarding climate change adaptation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Virgílio A. Bento ◽  
Andreia F. S. Ribeiro ◽  
Ana Russo ◽  
Célia M. Gouveia ◽  
Rita M. Cardoso ◽  
...  

AbstractThe impact of climate change on wheat and barley yields in two regions of the Iberian Peninsula is here examined. Regression models are developed by using EURO-CORDEX regional climate model (RCM) simulations, forced by ERA-Interim, with monthly maximum and minimum air temperatures and monthly accumulated precipitation as predictors. Additionally, RCM simulations forced by different global climate models for the historical period (1972–2000) and mid-of-century (2042–2070; under the two emission scenarios RCP4.5 and RCP8.5) are analysed. Results point to different regional responses of wheat and barley. In the southernmost regions, results indicate that the main yield driver is spring maximum temperature, while further north a larger dependence on spring precipitation and early winter maximum temperature is observed. Climate change seems to induce severe yield losses in the southern region, mainly due to an increase in spring maximum temperature. On the contrary, a yield increase is projected in the northern regions, with the main driver being early winter warming that stimulates earlier growth. These results warn on the need to implement sustainable agriculture policies, and on the necessity of regional adaptation strategies.


2014 ◽  
Vol 15 (4) ◽  
pp. 1517-1531 ◽  
Author(s):  
Gerhard Smiatek ◽  
Harald Kunstmann ◽  
Andreas Heckl

Abstract The impact of climate change on the future water availability of the upper Jordan River (UJR) and its tributaries Dan, Snir, and Hermon located in the eastern Mediterranean is evaluated by a highly resolved distributed approach with the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) run at 18.6- and 6.2-km resolution offline coupled with the Water Flow and Balance Simulation Model (WaSiM). The MM5 was driven with NCEP reanalysis for 1971–2000 and with Hadley Centre Coupled Model, version 3 (HadCM3), GCM forcings for 1971–2099. Because only one regional–global climate model combination was applied, the results may not give the full range of possible future projections. To describe the Dan spring behavior, the hydrological model was extended by a bypass approach to allow the fast discharge components of the Snir to enter the Dan catchment. Simulation results for the period 1976–2000 reveal that the coupled system was able to reproduce the observed discharge rates in the partially karstic complex terrain to a reasonable extent with the high-resolution 6.2-km meteorological input only. The performed future climate simulations show steadily rising temperatures with 2.2 K above the 1976–2000 mean for the period 2031–60 and 3.5 K for the period 2070–99. Precipitation trends are insignificant until the middle of the century, although a decrease of approximately 12% is simulated. For the end of the century, a reduction in rainfall ranging between 10% and 35% can be expected. Discharge in the UJR is simulated to decrease by 12% until 2060 and by 26% until 2099, both related to the 1976–2000 mean. The discharge decrease is associated with a lower number of high river flow years.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1548
Author(s):  
Suresh Marahatta ◽  
Deepak Aryal ◽  
Laxmi Prasad Devkota ◽  
Utsav Bhattarai ◽  
Dibesh Shrestha

This study aims at analysing the impact of climate change (CC) on the river hydrology of a complex mountainous river basin—the Budhigandaki River Basin (BRB)—using the Soil and Water Assessment Tool (SWAT) hydrological model that was calibrated and validated in Part I of this research. A relatively new approach of selecting global climate models (GCMs) for each of the two selected RCPs, 4.5 (stabilization scenario) and 8.5 (high emission scenario), representing four extreme cases (warm-wet, cold-wet, warm-dry, and cold-dry conditions), was applied. Future climate data was bias corrected using a quantile mapping method. The bias-corrected GCM data were forced into the SWAT model one at a time to simulate the future flows of BRB for three 30-year time windows: Immediate Future (2021–2050), Mid Future (2046–2075), and Far Future (2070–2099). The projected flows were compared with the corresponding monthly, seasonal, annual, and fractional differences of extreme flows of the simulated baseline period (1983–2012). The results showed that future long-term average annual flows are expected to increase in all climatic conditions for both RCPs compared to the baseline. The range of predicted changes in future monthly, seasonal, and annual flows shows high uncertainty. The comparative frequency analysis of the annual one-day-maximum and -minimum flows shows increased high flows and decreased low flows in the future. These results imply the necessity for design modifications in hydraulic structures as well as the preference of storage over run-of-river water resources development projects in the study basin from the perspective of climate resilience.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Yanyun Liu ◽  
Lian Xie ◽  
John M. Morrison ◽  
Daniel Kamykowski

The regional impact of global climate change on the ocean circulation around the Galápagos Archipelago is studied using the Hybrid Coordinate Ocean Model (HYCOM) configured for a four-level nested domain system. The modeling system is validated and calibrated using daily atmospheric forcing derived from the NCEP/NCAR reanalysis dataset from 1951 to 2007. The potential impact of future anthropogenic global warming (AGW) in the Galápagos region is examined using the calibrated HYCOM with forcing derived from the IPCC-AR4 climate model. Results show that although the oceanic variability in the entire Galápagos region is significantly affected by global climate change, the degree of such effects is inhomogeneous across the region. The upwelling region to the west of the Isabella Island shows relatively slower warming trends compared to the eastern Galápagos region. Diagnostic analysis suggests that the variability in the western Galápagos upwelling region is affected mainly by equatorial undercurrent (EUC) and Panama currents, while the central/east Galápagos is predominantly affected by both Peru and EUC currents. The inhomogeneous responses in different regions of the Galápagos Archipelago to future AGW can be explained by the incoherent changes of the various current systems in the Galápagos region as a result of global climate change.


Sign in / Sign up

Export Citation Format

Share Document