Natural Insulin Sensitizers for the Management of Diabetes Mellitus: A Review of Possible Molecular Mechanisms

Author(s):  
Habib Yaribeygi ◽  
Thozhukat Sathyapalan ◽  
Tannaz Jamialahmadi ◽  
Amirhossein Sahebkar
2021 ◽  
Vol 22 (2) ◽  
pp. 803
Author(s):  
Giuseppina Emanuela Grieco ◽  
Noemi Brusco ◽  
Giada Licata ◽  
Daniela Fignani ◽  
Caterina Formichi ◽  
...  

Diabetes mellitus is a group of heterogeneous metabolic disorders characterized by chronic hyperglycaemia mainly due to pancreatic β cell death and/or dysfunction, caused by several types of stress such as glucotoxicity, lipotoxicity and inflammation. Different patho-physiological mechanisms driving β cell response to these stresses are tightly regulated by microRNAs (miRNAs), a class of negative regulators of gene expression, involved in pathogenic mechanisms occurring in diabetes and in its complications. In this review, we aim to shed light on the most important miRNAs regulating the maintenance and the robustness of β cell identity, as well as on those miRNAs involved in the pathogenesis of the two main forms of diabetes mellitus, i.e., type 1 and type 2 diabetes. Additionally, we acknowledge that the understanding of miRNAs-regulated molecular mechanisms is fundamental in order to develop specific and effective strategies based on miRNAs as therapeutic targets, employing innovative molecules.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1236
Author(s):  
Jesús Burillo ◽  
Patricia Marqués ◽  
Beatriz Jiménez ◽  
Carlos González-Blanco ◽  
Manuel Benito ◽  
...  

Type 2 diabetes mellitus is a progressive disease that is characterized by the appearance of insulin resistance. The term insulin resistance is very wide and could affect different proteins involved in insulin signaling, as well as other mechanisms. In this review, we have analyzed the main molecular mechanisms that could be involved in the connection between type 2 diabetes and neurodegeneration, in general, and more specifically with the appearance of Alzheimer’s disease. We have studied, in more detail, the different processes involved, such as inflammation, endoplasmic reticulum stress, autophagy, and mitochondrial dysfunction.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 706
Author(s):  
Aishwarya R. Vaidya ◽  
Nina Wolska ◽  
Dina Vara ◽  
Reiner K. Mailer ◽  
Katrin Schröder ◽  
...  

Diabetes mellitus is the fifth most common cause of death worldwide. Due to its chronic nature, diabetes is a debilitating disease for the patient and a relevant cost for the national health system. Type 2 diabetes mellitus is the most common form of diabetes mellitus (90% of cases) and is characteristically multifactorial, with both genetic and environmental causes. Diabetes patients display a significant increase in the risk of developing cardiovascular disease compared to the rest of the population. This is associated with increased blood clotting, which results in circulatory complications and vascular damage. Platelets are circulating cells within the vascular system that contribute to hemostasis. Their increased tendency to activate and form thrombi has been observed in diabetes mellitus patients (i.e., platelet hyperactivity). The oxidative damage of platelets and the function of pro-oxidant enzymes such as the NADPH oxidases appear central to diabetes-dependent platelet hyperactivity. In addition to platelet hyperactivity, endothelial cell damage and alterations of the coagulation response also participate in the vascular damage associated with diabetes. Here, we present an updated interpretation of the molecular mechanisms underlying vascular damage in diabetes, including current therapeutic options for its control.


2021 ◽  
Vol 22 (11) ◽  
pp. 5757
Author(s):  
Laura Sgrazzutti ◽  
Francesco Sansone ◽  
Marina Attanasi ◽  
Sabrina Di Pillo ◽  
Francesco Chiarelli

Asthma and type 1 diabetes mellitus (T1DM) are two of the most frequent chronic diseases in children, representing a model of the atopic and autoimmune diseases respectively. These two groups of disorders are mediated by different immunological pathways, T helper (Th)1 for diabetes and Th2 for asthma. For many years, these two groups were thought to be mutually exclusive according to the Th1/Th2 paradigm. In children, the incidence of both diseases is steadily increasing worldwide. In this narrative review, we report the evidence of the potential link between asthma and T1DM in childhood. We discuss which molecular mechanisms could be involved in the link between asthma and T1DM, such as genetic predisposition, cytokine patterns, and environmental influences. Cytokine profile of children with asthma and T1DM shows an activation of both Th1 and Th2 pathways, suggesting a complex genetic-epigenetic interaction. In conclusion, in children, the potential link between asthma and T1DM needs further investigation to improve the diagnostic and therapeutic approach to these patients. The aim of this review is to invite the pediatricians to consider the potential copresence of these two disorders in clinical practice.


2010 ◽  
Vol 11 (1) ◽  
pp. 61-74 ◽  
Author(s):  
Corey E. Tabit ◽  
William B. Chung ◽  
Naomi M. Hamburg ◽  
Joseph A. Vita

2021 ◽  
Vol 17 ◽  
Author(s):  
Farbod Bahreini ◽  
Elham Rayzan ◽  
Nima Rezaei

: Type 1 diabetes mellitus is a multifactorial, progressive, autoimmune disease with a strong genetic feature that can affect multiple organs, including kidney, eyes, and nerves. Early detection of type 1 diabetes can help critically to avoid serious damages to these organs. MicroRNAs are small RNA molecules that act in post-transcriptional gene regulation by attaching to the complementary sequence in the 3'-untranslated region of their target genes. Alterations in the expression of microRNA coding genes are extensively reported in several diseases such as type 1 diabetes. Presenting non-invasive biomarkers for early detection of type 1 diabetes by quantifying microRNAs gene expression level can be an influential step in biotechnology and medicine. This review discusses the area of microRNAs dysregulation in type 1 diabetes and affected molecular mechanisms involved in pancreatic islet cells formation and dysregulation in the expression of inflammatory elements as well as pro-inflammatory cytokines.


Author(s):  
Pedro Henrique Abreu da Silva ◽  
Andressa Santos Garcia ◽  
Fábio Aguiar Alves ◽  
André Luis Souza dos Santos ◽  
Cátia Lacerda Sodré

: The COVID-19 pandemic turned the SARS-CoV-2 into the main target of scientific research all around the world. Many advances have already been made, but there is still a long way to go to solve the molecular mechanisms related to the process of the SARS-CoV-2 infection, as well as the particularities of the disease, its course and the complex host-pathogen relationships. However, a lot has been theorized and associated with COVID-19, like the worst prognosis of the disease among individuals with some comorbidities, like diabetes mellitus. In this perspective, diabetic patients are repeatedly associated with more severe cases of COVID-19 when compared to non-diabetic patients. Even though ACE2 (angiotensin-converting enzyme 2) was recognized as the host cell receptor for both binding and entering of SARS-CoV-2 particles, it was also pointed out that this enzyme plays an important protective role against pulmonary damage. Therefore, paradoxically as it may seem, the low baseline level of this receptor in people with diabetes is directly linked to a more expressive loss of ACE2 protective effect, which could be one of the possible factors for the worst prognosis of COVID-19. Still, COVID-19 may also have a diabetogenic effect. From this point of view, the main topics that will be highlighted are (i) the mechanism of the viral entry, with special attention to the cellular receptor (ACE2) and the viral binding protein (spike), (ii) the relationship among the renin-angiotensin system, the infection process and the patients' prognosis, (iii) the glucose control and the medicines used in this event, and (iv) a brief analysis on diabetes triggered by COVID-19.


Sign in / Sign up

Export Citation Format

Share Document