Constructing Equidistant Curve for Planar Composite Curve in CAD Systems

2021 ◽  
pp. 296-309
Author(s):  
Oleg Y. Filimonov ◽  
Vitaly A. Egunov ◽  
Elena N. Nesterenko
Keyword(s):  
Author(s):  
V. A. Martynyuk ◽  
V. A. Trudonoshin ◽  
V. G. Fedoruk

The article considers applications of foreign CAD-systems in creating the challenging projects at domestic enterprises and design bureaus. As stated in the article "... presently, there is no domestic CAD-system that could completely replace such foreign products as NX, CATIA, Credo". Besides, due to international cooperation in creating the challenging projects (for example, the project to create a modern wide-body aircraft, proposed jointly with China), it makes sense to use the worldwide known and popular CAD systems (the aforementioned NX, CATIA, Credo). Therefore, in the foreseeable future, we will still have to use foreign software products. Of course, there always remains a question of the reliability of the results obtained. Actually, this question is always open regardless of what software product is used - domestic or foreign. This question has been haunting both developers and users of CAD systems for the last 30 to 40 years. But with using domestic systems, it is much easier to identify the cause of inaccurate results and correct the mathematical models used, the methods of numerical integration applied, and the solution of systems of nonlinear algebraic systems. Everything is much more complicated if we use a foreign software product. All advertising conversations that there is a tool to make the detected errors available to the developers, remain only conversations in the real world. It is easily understandable to domestic users, and, especially, to domestic developers of similar software products. The existing development rates and competition for potential buyers dictate a rigid framework of deadlines for releasing all new versions of the product and introducing the latest developments into commercial product, etc. As a result, the known errors migrate from version to version, and many users have accepted it long ago. Especially, this concerns the less popular tools rather than the most popular applications (modules) of a CAD system. For example, in CAD systems, the "Modeling" module where geometric models of designed parts and assembly units are created has been repeatedly crosschecked. But most of the errors are hidden in applications related to the design of parts from sheet material and to the pipeline design, as well as in applications related to the analysis of moving mechanisms and to the strength or gas dynamic analysis by the finite element method.The article gives a concrete example of a moving mechanism in the analysis of which an error was detected using the mathematical model of external influence (a source of speed) in the NX 10.0 system of Siemens.


Author(s):  
Vladimir Lantsov ◽  
A. Papulina

The new algorithm of solving harmonic balance equations which used in electronic CAD systems is presented. The new algorithm is based on implementation to harmonic balance equations the ideas of model order reduction methods. This algorithm allows significantly reduce the size of memory for storing of model equations and reduce of computational costs.


2020 ◽  
Vol 96 (3s) ◽  
pp. 612-614
Author(s):  
В.В. Елесина ◽  
И.О. Метелкин

Проведен анализ случаев возникновения тиристорного эффекта в СВЧ ИС, изготовленных по технологии SiGe БиКМОП, при воздействии ионизирующего излучения. Рассмотрены области СВЧ ИС, чувствительные к возникновению ТЭ, определены основные параметры тиристорных структур. Проведена апробация подхода к восстановлению параметров схемно-топологической радиационно-ориентированной модели тиристорной структуры для САПР. The paper analyzes ionizing radiation induced latchup in microwave SiGe BiCMOS integrated circuits (ICs). Critical parts of ICs sensitive to latchup have been identified and basic parameters of corresponding parasitic thyristor structures have been determined. An approach has been approved to the thyristor structure compact model parameters extraction procedure intended for use in CAD systems.


Author(s):  
Volodymyr Riznyk ◽  
Oleg Riznyk ◽  
Mykhailo Solomko ◽  
Yuriy Tsymbal ◽  
Daniel Skrybailo-Leskiv ◽  
...  

Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 137
Author(s):  
Florian Schlosser ◽  
Heinrich Wiebe ◽  
Timothy G. Walmsley ◽  
Martin J. Atkins ◽  
Michael R. W. Walmsley ◽  
...  

Heat pumps are the key technology to decarbonise thermal processes by upgrading industrial surplus heat using renewable electricity. Existing insight-based integration methods refer to the idealised Grand Composite Curve requiring the full exploitation of heat recovery potential but leave the question of how to deal with technical or economic limitations unanswered. In this work, a novel Heat Pump Bridge Analysis (HPBA) is introduced for practically targeting technical and economic heat pump potential by applying Coefficient of Performance curves into the Modified Energy Transfer Diagram (METD). Removing cross-Pinch violations and operating heat exchangers at minimum approach temperatures by combined application of Bridge Analysis increases the heat recovery rate and reduce the temperature lift to be pumped at the same time. The insight-based METD allows the individual matching of heat surpluses and deficits of individual streams with the capabilities and performance of different market-available heat pump concepts. For an illustrative example, the presented modifications based on HPBA increase the economically viable share of the technical heat pump potential from 61% to 79%.


1952 ◽  
Vol 25 (4) ◽  
pp. 720-729 ◽  
Author(s):  
John D. Ferry ◽  
Edwin R. Fitzgerald ◽  
Lester D. Grandine ◽  
Malcolm L. Williams

Abstract By the use of reduced variables, the temperature dependence and frequency dependence of dynamic mechanical properties of rubberlike materials can be interrelated without any arbitrary assumptions about the functional form of either The definitions of the reduced variables are based on some simple assumptions regarding the nature of relaxation processes. The real part of the reduced dynamic rigidity, plotted against the reduced frequency, gives a single composite curve for data over wide ranges of frequency and temperature; this is true also for the imaginary part of the rigidity or the dynamic viscosity. The real and imaginary parts of the rigidity, although independent measurements, are interrelated through the distribution function of relaxation times, and this relation provides a check on experimental results. First and second approximation methods of calculating the distribution function from dynamic data are given. The use of the distribution function to predict various types of time-dependent mechanical behavior is illustrated.


Author(s):  
Vincent Cheutet ◽  
Jean-Philippe Pernot ◽  
Jean-Claude Leon ◽  
Bianca Falcidieno ◽  
Franca Giannini

To limit low-level manipulations of free-form surfaces, the concept of Fully Free Form Deformation Features (δ-F4) have been introduced. They correspond to shapes obtained by deformation of a surface area according to specified geometric constraints. In our work, we mainly focused on those features aimed at enforcing the visual effect of the so-called character lines, extensively used by designers to specify the shape of an object. Therefore, in the proposed approach, 3D lines are used to drive surface deformation over specified areas. Depending on the wished shape and reflection light effects, the insertion of character lines may generate surface tangency discontinuities. In CAD systems, such kind of discontinuities is generally created by a decomposition of the initial surface into several patches. This process can be tedious and very complex, depending on the shape of the deformation area and the desired surface continuity. Here, a method is proposed to create discontinuities on a surface, using the trimming properties of surfaces. The corresponding deformation features produce the resulting surface in a single modification step and handle simultaneously more constraints than current CAD systems. The principle of the proposed approach is based on arbitrary shaped discontinuities in the parameter domain of the surface to allow the surface exhibiting geometric discontinuities at user-prescribed points or along lines. The proposed approach is illustrated with examples obtained using our prototype software.


Sign in / Sign up

Export Citation Format

Share Document