Estimations of Initial Errors Growth in Weather Prediction by Low-dimensional Atmospheric Model

Author(s):  
Hynek Bednář ◽  
Aleš Raidl ◽  
Jiří Mikšovský
2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Hynek Bednář ◽  
Aleš Raidl ◽  
Jiří Mikšovský

Initial errors in weather prediction grow in time and, as they become larger, their growth slows down and then stops at an asymptotic value. Time of reaching this saturation point represents the limit of predictability. This paper studies the asymptotic values and time limits in a chaotic atmospheric model for five initial errors, using ensemble prediction method (model’s data) as well as error approximation by quadratic and logarithmic hypothesis and their modifications. We show that modified hypotheses approximate the model’s time limits better, but not without serious disadvantages. We demonstrate how hypotheses can be further improved to achieve better match of time limits with the model. We also show that quadratic hypothesis approximates the model’s asymptotic value best and that, after improvement, it also approximates the model’s time limits better for almost all initial errors and time lengths.


2012 ◽  
Vol 5 (4) ◽  
pp. 3771-3851 ◽  
Author(s):  
V. Masson ◽  
P. Le Moigne ◽  
E. Martin ◽  
S. Faroux ◽  
A. Alias ◽  
...  

Abstract. SURFEX is a new externalized land and ocean surface platform that describes the surface fluxes and the evolution of four types of surface: nature, town, inland water and ocean. It can be run either coupled or in offline mode. It is mostly based on pre-existing, well validated scientific models. It can be used in offline mode (from point scale to global runs) or fully coupled with an atmospheric model. SURFEX is able to simulate fluxes of carbon dioxide, chemical species, continental aerosols, sea salt and snow particles. It also includes a data assimilation module. The main principles of the organization of the surface are described first. Then, a survey is made of the scientific module (including the coupling strategy). Finally the main applications of the code are summarized. The current applications are extremely diverse, ranging from surface monitoring and hydrology to numerical weather prediction and global climate simulations. The validation work undertaken shows that replacing the pre-existing surface models by SURFEX in these applications is usually associated with improved skill, as the numerous scientific developments contained in this community code are used to good advantage.


Atmosphere ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 484 ◽  
Author(s):  
Ana Firanj Sremac ◽  
Branislava Lalić ◽  
Milena Marčić ◽  
Ljiljana Dekić

The aim of this research is to present a weather-based forecasting system for apple fire blight (Erwinia amylovora) and downy mildew of grapevine (Plasmopara viticola) under Serbian agroecological conditions and test its efficacy. The weather-based forecasting system contains Numerical Weather Prediction (NWP) model outputs and a disease occurrence model. The weather forecast used is a product of the high-resolution forecast (HRES) atmospheric model by the European Centre for Medium-Range Weather Forecasts (ECMWF). For disease modelling, we selected a biometeorological system for messages on the occurrence of diseases in fruits and vines (BAHUS) because it contains both diseases with well-known and tested algorithms. Several comparisons were made: (1) forecasted variables for the fifth day are compared against measurements from the agrometeorological network at seven locations for three months (March, April, and May) in the period 2012–2018 to determine forecast efficacy; (2) BAHUS runs driven with observed and forecast meteorology were compared to test the impact of forecasted meteorological data; and (3) BAHUS runs were compared with field disease observations to estimate system efficacy in plant disease forecasts. The BAHUS runs with forecasted and observed meteorology were in good agreement. The results obtained encourage further development, with the goal of fully utilizing this weather-based forecasting system.


2014 ◽  
Vol 1 (2) ◽  
pp. 1283-1312
Author(s):  
M. Abbas ◽  
A. Ilin ◽  
A. Solonen ◽  
J. Hakkarainen ◽  
E. Oja ◽  
...  

Abstract. In this work, we consider the Bayesian optimization (BO) approach for tuning parameters of complex chaotic systems. Such problems arise, for instance, in tuning the sub-grid scale parameterizations in weather and climate models. For such problems, the tuning procedure is generally based on a performance metric which measures how well the tuned model fits the data. This tuning is often a computationally expensive task. We show that BO, as a tool for finding the extrema of computationally expensive objective functions, is suitable for such tuning tasks. In the experiments, we consider tuning parameters of two systems: a simplified atmospheric model and a low-dimensional chaotic system. We show that BO is able to tune parameters of both the systems with a low number of objective function evaluations and without the need of any gradient information.


2016 ◽  
Vol 144 (4) ◽  
pp. 1273-1298 ◽  
Author(s):  
Yunji Zhang ◽  
Fuqing Zhang ◽  
David J. Stensrud ◽  
Zhiyong Meng

Abstract Using a high-resolution convection-allowing numerical weather prediction model, this study seeks to explore the intrinsic predictability of the severe tornadic thunderstorm event on 20 May 2013 in Oklahoma from its preinitiation environment to initiation, upscale organization, and interaction with other convective storms. This is accomplished through ensemble forecasts perturbed with minute initial condition uncertainties that were beyond detection capabilities of any current observational platforms. It was found that these small perturbations, too small to modify the initial mesoscale environmental instability and moisture fields, will be propagated and evolved via turbulence within the PBL and rapidly amplified in moist convective processes through positive feedbacks associated with updrafts, phase transitions of water species, and cold pools, thus greatly affecting the appearance, organization, and development of thunderstorms. The forecast errors remain nearly unchanged even when the initial perturbations (errors) were reduced by as much as 90%, which strongly suggests an inherently limited predictability for this thunderstorm event for lead times as short as 3–6 h. Further scale decomposition reveals rapid error growth and saturation in meso-γ scales (regardless of the magnitude of initial errors) and subsequent upscale growth into meso-β scales.


Author(s):  
Antonio Parodi ◽  
Martina Lagasio ◽  
Agostino N. Meroni ◽  
Flavio Pignone ◽  
Francesco Silvestro ◽  
...  

AbstractBetween the 4th and the 6th of November 1994, Piedmont and the western part of Liguria (two regions in north-western Italy) were hit by heavy rainfalls that caused the flooding of the Po, the Tanaro rivers and several of their tributaries, causing 70 victims and the displacement of over 2000 people. At the time of the event, no early warning system was in place and the concept of hydro-meteorological forecasting chain was in its infancy, since it was still limited to a reduced number of research applications, strongly constrained by coarse-resolution modelling capabilities both on the meteorological and the hydrological sides. In this study, the skills of the high-resolution CIMA Research Foundation operational hydro-meteorological forecasting chain are tested in the Piedmont 1994 event. The chain includes a cloud-resolving numerical weather prediction (NWP) model, a stochastic rainfall downscaling model, and a continuous distributed hydrological model. This hydro-meteorological chain is tested in a set of operational configurations, meaning that forecast products are used to initialise and force the atmospheric model at the boundaries. The set consists of four experiments with different options of the microphysical scheme, which is known to be a critical parameterisation in this kind of phenomena. Results show that all the configurations produce an adequate and timely forecast (about 2 days ahead) with realistic rainfall fields and, consequently, very good peak flow discharge curves. The added value of the high resolution of the NWP model emerges, in particular, when looking at the location of the convective part of the event, which hit the Liguria region.


2016 ◽  
Vol 31 (5) ◽  
pp. 1547-1572 ◽  
Author(s):  
Silvio N. Figueroa ◽  
José P. Bonatti ◽  
Paulo Y. Kubota ◽  
Georg A. Grell ◽  
Hugh Morrison ◽  
...  

Abstract This article describes the main features of the Brazilian Global Atmospheric Model (BAM), analyses of its performance for tropical rainfall forecasting, and its sensitivity to convective scheme and horizontal resolution. BAM is the new global atmospheric model of the Center for Weather Forecasting and Climate Research [Centro de Previsão de Tempo e Estudos Climáticos (CPTEC)], which includes a new dynamical core and state-of-the-art parameterization schemes. BAM’s dynamical core incorporates a monotonic two-time-level semi-Lagrangian scheme, which is carried out completely on the model grid for the tridimensional transport of moisture, microphysical prognostic variables, and tracers. The performance of the quantitative precipitation forecasts (QPFs) from two convective schemes, the Grell–Dévényi (GD) scheme and its modified version (GDM), and two different horizontal resolutions are evaluated against the daily TRMM Multisatellite Precipitation Analysis over different tropical regions. Three main results are 1) the QPF skill was improved substantially with GDM in comparison to GD; 2) the increase in the horizontal resolution without any ad hoc tuning improves the variance of precipitation over continents with complex orography, such as Africa and South America, whereas over oceans there are no significant differences; and 3) the systematic errors (dry or wet biases) remain virtually unchanged for 5-day forecasts. Despite improvements in the tropical precipitation forecasts, especially over southeastern Brazil, dry biases over the Amazon and La Plata remain in BAM. Improving the precipitation forecasts over these regions remains a challenge for the future development of the model to be used not only for numerical weather prediction over South America but also for global climate simulations.


2008 ◽  
Vol 136 (12) ◽  
pp. 4746-4759 ◽  
Author(s):  
R. M. Samelson ◽  
P. L. Barbour

Abstract A mesoscale atmospheric model, nested in operational global numerical weather prediction fields, is used to estimate low-level winds and surface wind stress through Nares Strait, between Ellesmere Island and Greenland, during 2 yr from August 2003 to July 2005. During most of the year, the model low-level winds are dominated by intense, southward along-strait flow, with monthly-mean southward 10-m winds reaching 10 m s−1 in winter. Summertime flow is weak and distributions of hourly along-strait winds during the 2-yr period are strongly bimodal. The strong southward low-level winds are associated with ageostrophic, orographically channeled flow down the pressure gradient from the Lincoln Sea to Baffin Bay and are highly correlated with the pressure difference along Nares Strait. The 2-yr means and leading EOFs of monthly-mean 10-m winds and wind stress place the strongest winds and stress in the southern parts of Smith Sound and of Kennedy Channel, at the openings to Baffin Bay and Kane Basin, at known sites of polynya formation, including the North Water polynya in Smith Sound, suggesting that the locally intensified winds may cause these persistent polynyas. An intense wind event observed in Nares Strait by a field camp, with surface winds exceeding 30 m s−1, generally follows the typical pattern of these low-level flows. Based on the model correlation of winds and pressure difference, a 51-yr time series of estimated winds in Nares Strait is reconstructed from historical surface pressure measurements at Thule, Greenland, and Alert, Canada. The pressure difference and reconstructed wind time series are correlated with the Arctic Oscillation at annual and longer periods, but not on monthly periods.


Author(s):  
Aida Jabbari ◽  
Jae-Min So ◽  
Deg-Hyo Bae

Abstract. Hydro-meteorological predictions are important for water management plans, which include providing early flood warnings and preventing flood damages. This study evaluates the real-time precipitation of an atmospheric model at the point and catchment scales to select the proper hydrological model to couple with the atmospheric model. Furthermore, a variety of tests were conducted to quantify the accuracy assessments of coupled models to provide details on the maximum spatial and temporal resolutions and lead times in a real-time forecasting system. As a major limitation of previous studies, the temporal and spatial resolutions of the hydrological model are smaller than those of the meteorological model. Here, through ultra-fine scale of temporal (10 min) and spatial resolution (1 km × 1 km), we determined the optimal resolution. A numerical weather prediction model and a rainfall runoff model were employed to evaluate real-time flood forecasting for the Imjin River (South and North Korea). The comparison of the forecasted precipitation and the observed precipitation indicated that the Weather Research and Forecasting (WRF) model underestimated precipitation. The skill of the model was relatively higher for the catchment than for the point scale, as illustrated by the lower RMSE value, which is important for a semi-distributed hydrological model. The variations in temporal and spatial resolutions illustrated a decrease in accuracy; additionally, the optimal spatial resolution obtained at 8 km and the temporal resolution did not affect the inherent inaccuracy of the results. Lead time variation demonstrated that lead time dependency was almost negligible below 36 h. With reference to our case study, comparisons of model performance provided quantitative knowledge for understanding the credibility and restrictions of hydro-meteorological models.


Sign in / Sign up

Export Citation Format

Share Document