Slow Cracking in Composite Materials: Catastrophic Fracture of Composite Structures

Author(s):  
Peter W. R. Beaumont
Author(s):  
Peter W. R. Beaumont ◽  
Costas Soutis

Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large-scale engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a ‘fracture safe design’ is immense. Fitness considerations for long-life implementation of large composite structures include understanding phenomena such as impact, fatigue, creep and stress corrosion cracking that affect reliability, life expectancy and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined, and takes service duty into account. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’.


2021 ◽  
Vol 3 (9) ◽  
Author(s):  
Sadik Omairey ◽  
Nithin Jayasree ◽  
Mihalis Kazilas

AbstractThe increasing use of fibre reinforced polymer composite materials in a wide range of applications increases the use of similar and dissimilar joints. Traditional joining methods such as welding, mechanical fastening and riveting are challenging in composites due to their material properties, heterogeneous nature, and layup configuration. Adhesive bonding allows flexibility in materials selection and offers improved production efficiency from product design and manufacture to final assembly, enabling cost reduction. However, the performance of adhesively bonded composite structures cannot be fully verified by inspection and testing due to the unforeseen nature of defects and manufacturing uncertainties presented in this joining method. These uncertainties can manifest as kissing bonds, porosity and voids in the adhesive. As a result, the use of adhesively bonded joints is often constrained by conservative certification requirements, limiting the potential of composite materials in weight reduction, cost-saving, and performance. There is a need to identify these uncertainties and understand their effect when designing these adhesively bonded joints. This article aims to report and categorise these uncertainties, offering the reader a reliable and inclusive source to conduct further research, such as the development of probabilistic reliability-based design optimisation, sensitivity analysis, defect detection methods and process development.


2021 ◽  
Vol 5 (2) ◽  
pp. 36
Author(s):  
Aleksander Muc

The main goal of building composite materials and structures is to provide appropriate a priori controlled physico-chemical properties. For this purpose, a strengthening is introduced that can bear loads higher than those borne by isotropic materials, improve creep resistance, etc. Composite materials can be designed in a different fashion to meet specific properties requirements.Nevertheless, it is necessary to be careful about the orientation, placement and sizes of different types of reinforcement. These issues should be solved by optimization, which, however, requires the construction of appropriate models. In the present paper we intend to discuss formulations of kinematic and constitutive relations and the possible application of homogenization methods. Then, 2D relations for multilayered composite plates and cylindrical shells are derived with the use of the Euler–Lagrange equations, through the application of the symbolic package Mathematica. The introduced form of the First-Ply-Failure criteria demonstrates the non-uniqueness in solutions and complications in searching for the global macroscopic optimal solutions. The information presented to readers is enriched by adding selected review papers, surveys and monographs in the area of composite structures.


2021 ◽  
pp. 096739112110141
Author(s):  
Ferhat Ceritbinmez ◽  
Ahmet Yapici ◽  
Erdoğan Kanca

In this study, the effect of adding nanosize additive to glass fiber reinforced composite plates on mechanical properties and surface milling was investigated. In the light of the investigations, with the addition of MWCNTs additive in the composite production, the strength of the material has been changed and the more durable composite materials have been obtained. Slots were opened with different cutting speed and feed rate parameters to the composite layers. Surface roughness of the composite layers and slot size were examined and also abrasions of cutting tools used in cutting process were determined. It was observed that the addition of nanoparticles to the laminated glass fiber composite materials played an effective role in the strength of the material and caused cutting tool wear.


Author(s):  
М. Н. Журибеда

It is shown that the development of the concept of metrological support for the creation of composite structures of aircraft aggregates of the transport category and their support at all stages of the existence of an aircraft should be based on the formation of a complex criterion for the effectiveness of the use of polymer composite materials. It is noted that the effectiveness of a structure made of polymer composite materials is provided by various methods, methods and technical means of metrology. The structure of a complex of studies aimed at developing the concept of metrological support is discussed, the first point of which is to analyze the types of metrological characteristics and the scope of work to determine them at the main stages of the existence of composite structures of aircraft aggregates of the transport category. Based on the analysis of numerous publications on the problem of metrological support of the main stages of creating technical products, the main types of measurements of the metrological characteristics of composite structures of aircraft aggregates of the transport category have been established, and the composition of the nomenclature of works on metrological support of the main stages of the existence of these structures has been determined. 12 main types of measurements of parameters have been identified, on which the whole variety of production physical quantities and the description of the properties and characteristics of structures of aircraft aggregates made of polymer composite materials are based. The composition of the main works on the metrological support of the four stages of the existence of the aircraft is revealed: design, production, operation and disposal of composite structures formed into systems of sequential blocks for performing these works. It is shown that the tasks of metrological support at the facility manufacturers should be solved during the technological preparation of serial production and testing of the installation series of products, and also take into account the peculiarities of aircraft operation and disposal of composite structural elements in terms of work safety and economic efficiency of their results. An enlarged sequence has been established for organizing work on metrological support for measuring the properties of composite structures of aircraft aggregates at aviation enterprises. The results presented in the first approximation provide a solution to practically important aspects of the problem under discussion.


2009 ◽  
Author(s):  
◽  
David Van Wyk

The development of an evolutionary optimisation method and its application to the design of an advanced composite structure is discussed in this study. Composite materials are increasingly being used in various fields, and so optimisation of such structures would be advantageous. From among the various methods available, one particular method, known as Evolutionary Structural Optimisation (ESO), is shown here. ESO is an empirical method, based on the concept of removing and adding material from a structure, in order to create an optimum shape. The objective of the research is to create an ESO method, utilising MSC.Patran/Nastran, to optimise composite structures. The creation of the ESO algorithm is shown, and the results of the development of the ESO algorithm are presented. A tailfin of an aircraft was used as an application example. The aim was to reduce weight and create an optimised design for manufacture. The criterion for the analyses undertaken was stress based. Two models of the tailfin are used to demonstrate the effectiveness of the developed ESO algorithm. The results of this research are presented in the study.


2012 ◽  
Vol 24 (8) ◽  
pp. 991-1006 ◽  
Author(s):  
Oliver J Myers ◽  
George Currie ◽  
Jonathan Rudd ◽  
Dustin Spayde ◽  
Nydeia Wright Bolden

Defects in composite laminates are difficult to detect because of the conductive and paramagnetic properties of composite materials. Timely detection of defects in composite laminates can improve reliability. This research illustrates the preliminary analysis and detection of delaminations in carbon fiber laminate beams using a single layer of magnetostrictive particles and noncontacting concentric magnetic excitation and sensing coils. The baseline analytical models also begin to address the intrusive nature of the magnetostrictive particles as well as relate the applied excitation field with the stress and magnetic flux densities induced in the magnetostrictive layer. Numerical methods are used to begin to characterize the presence of magnetostrictive particles in the laminate and the behavior of the magnetostrictive particles in relationship to the magnetic field used during sensing. Unidirectional laminates with embedded delaminations are used for simulations and experimentations. A novel, yet simplified fabrication method is discussed to ensure consistent scanning and sensing capabilities. The nondestructive evaluation scanning experiments were conducted with various shapes and sizes of damages introduced into carbon fiber–reinforced polymeric composite structures. The results demonstrate high potential for magnetostrictive particles as a low-cost, noncontacting, and reliable sensor for nondestructive evaluation of composite materials.


2014 ◽  
Vol 605 ◽  
pp. 303-305
Author(s):  
Jerome Rossignol ◽  
Alain Thionnet

In the field of the transport, the increase of the security rule recommends to a periodic control of the structure to detect damage due to mechanical loadings. Now, current materials, used in the case of transport applications, are the composite materials. The methods, to control these materials or composite structures, need to be low cost, non-destructive, in-situ and swiftness as far as possible. The scientific literature reports many methods to control the damage in composite materials and structures. However the above requirements and the adaptation to composite materials reduce the number of methods that can be used. Currently, the adapted methods are based on infrared thermography, acoustical emission, EMIR (ElectroMagnetic InfraRed) or microwave imagery. We present an innovative non-destructive method of detecting damages in composite materials. The method is based on the observation and analysis of the modification in dielectric material resulting from damage. The originality of this method is that the diagnostic is obtained by using a microstrip resonator at microwave frequencies. The feasibility of the method is demonstrated by the detection of a fibre break into an unidirectional composite submitted to a flexural loading. The fibre break is the damage to detect. The perspective of this work is to develop a quantification and a localization of damages.


2020 ◽  
pp. 073168442095810
Author(s):  
Sang Yoon Park ◽  
Won Jong Choi

This paper presents a review of recent literature related to the static mechanical testing of thermoset-based carbon fiber reinforced composites and introduces a material qualification methodology to generate statistically-based allowable design values for aerospace application. Although most test methods have been found to be effective in determining the specific material properties by incorporating them into the material qualification and quality control provisions, a full validation to clarify the behavior of thermoset-based laminated composite materials is currently lacking, particularly with regard to the characterization of compressive, in-plane, interlaminar shear, and damage tolerance properties. The present study obtains information on the different types of test method that can be employed within the same material properties, and makes an in-depth experimental comparison based on the past literatures. A discussion on the scope of theoretical analysis involves a description of how the proposed test method can be adequate for obtaining more accurate material properties. This discussion is directly applicable to the assessment of material nonlinearity and the geometrical effect of specimens. Finally, the resulting failure modes and the effect of each material property are studied to aid the understanding of the load distribution and behavior of laminated composite materials.


2018 ◽  
Vol 8 (11) ◽  
pp. 2319 ◽  
Author(s):  
Evgeny Glushkov ◽  
Natalia Glushkova ◽  
Bernard Bonello ◽  
Lu Lu ◽  
Eric Charron ◽  
...  

In this paper we demonstrate a high potential of transient grating method to study the behavior of surface acoustic waves in nanowires-based composite structures. The investigation of dispersion curves is done by adjusting the calculated dispersion curves to the experimental results. The wave propagation is simulated using the explicit integral and asymptotic representations for laser-generated surface acoustic waves in layered anisotropic waveguides. The analysis of the behavior permits to determine all elastic constants and effective elastic moduli of constituent materials, which is important both for technological applications of these materials and for basic scientific studies of their physical properties.


Sign in / Sign up

Export Citation Format

Share Document