Further Evaluating the Impact of Kernel and Bandwidth Specifications of Geographically Weighted Regression on the Equity and Uniformity of Mass Appraisal Models

Author(s):  
Paul E. Bidanset ◽  
John R. Lombard ◽  
Peadar Davis ◽  
Michael McCord ◽  
William J. McCluskey
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ferdinando Ofria ◽  
Massimo Mucciardi

PurposeThe purpose is to analyze the spatially varying impacts of corruption and public debt as % of GDP (proxies of government failures) on non-performing loans (NPLs) in European countries; comparing two periods: one prior to the crisis of 2007 and another one after that. The authors first modeled the NPLs with an ordinary lest square (OLS) regression and found clear evidence of spatial instability in the distribution of the residuals. As a second step, the authors utilized the geographically weighted regression (GWR) to explore regional variations in the relationship between NPLs and the proxies of “Government failures”.Design/methodology/approachThe authors first modeled the NPL with an OLS regression and found clear evidence of spatial instability in the distribution of the residuals. As a second step, the author utilized the Geographically Weighted Regression (GWR) (Fotheringham et al., 2002) to explore regional variations in the relationship between NPLs and proxies of “Government failures” (corruption and public debt as % of GDP).FindingsThe results confirm that corruption and public debt as % of GDP, after the crisis of 2007, have affected significantly on NPLs of the EU countries and the following countries neighboring the EU: Switzerland, Iceland, Norway, Montenegro, and Turkey.Originality/valueIn a spatial prospective, unprecedented in the literature, this research focused on the impact of corruption and public debt as % of GDP on NPLs in European countries. The positive correlation, as expected, between public debt and NPLs highlights that fiscal problems in Eurozone countries have led to an important rise of problem loans. The impact of institutional corruption on NPLs reports that the higher the corruption, the higher is the level of NPLs.


Land ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 147
Author(s):  
Hiebert ◽  
Allen

As global consumption and development rates continue to grow, there will be persistent stress placed on public goods, namely environmental amenities. Urban sprawl and development places pressure on forested areas, as they are often displaced or degraded in the name of economic development. This is problematic because environmental amenities are valued by the public, but traditional market analysis typically obscures the value of these goods and services that are not explicitly traded in a market setting. This research examines the non-market value of environmental amenities in Greenville County, SC, by utilizing a hedonic price model of home sale data in 2011. We overlaid home sale data with 2011 National Land Cover Data to estimate the value of a forest view, proximity to a forest, and proximity to agriculture on the value of homes. We then ran two regression models, an ordinary least squares (OLS) and a geographically weighted regression to compare the impact of space on the hedonic model variables. Results show that citizens in Greenville County are willing to pay for environmental amenities, particularly views of a forest and proximity to forested and agricultural areas. However, the impact and directionality of these variables differ greatly across space. These findings suggest the need for an integration of spatial dynamics into environmental valuation estimates to inform conservation policy and intentional city planning.


2021 ◽  
Author(s):  
Huiping Wang ◽  
Xueying Zhang

Abstract The industrial sector is the sector with the largest CO2 emissions, and to reduce overall CO2 emissions, analysis of the impact factors holds significance. Based on the 2015 industrial CO2 emissions of 282 cities in China combined with economic and social data, and a geographically weighted regression (GWR) model, we analysed the characteristics of the spatial distribution of CO2 emissions and the influencing factors of spatial heterogeneity. The results show that China's urban industrial CO2 emissions present a significant spatial agglomeration state that includes Shandong, Beijing, Tianjin, Shanghai, Zhejiang, and Jiangsu, and the core of the coastal areas form a high-high (H-H) concentration; a low-low aggregation (L-L) is formed in less developed areas such as Guizhou, Yunnan, Sichuan and Guangxi. The influence of various factors on industrial CO2 emissions has significant spatial heterogeneity. The Industrial scale, industry share of GDP, and share of the service industry in GDP are factors that promote industrial CO2 emissions. The technological innovation, population density, and social investment in fixed assets are important factors that inhibit industrial CO2 emissions, but their impact on industrial CO2 emissions shows spatial differences. In contrast, the level of economic development, foreign direct investment, financial development and government intervention have a two-way impact on industrial CO2 emissions.


2019 ◽  
Vol 104 ◽  
pp. 127-136 ◽  
Author(s):  
Yanan Wang ◽  
Xinbei Li ◽  
Yanqing Kang ◽  
Wei Chen ◽  
Minjuan Zhao ◽  
...  

2014 ◽  
Vol 17 (4) ◽  
pp. 137-154 ◽  
Author(s):  
Karolina Lewandowska-Gwarda

Migration has a principal influence on countries’ population changes. Thus, the issues connected with the causes, effects and directions of people’s movements are a common topic of political and academic discussions. The aim of this paper is to analyse the spatial distribution of officially registered foreign migration in Poland in 2012. GIS tools are implemented for data visualization and statistical analysis. Geographically weighted regression (GWR) is used to estimate the impact of unemployment, wages and other socioeconomic variables on the foreign emigration and immigration measure. GWR provides spatially varying estimates of model parameters that can be presented on a map, giving a useful graphical representation of spatially varying relationships.  


2020 ◽  
Vol 12 (22) ◽  
pp. 9338
Author(s):  
Anna Kopeć ◽  
Paweł Trybała ◽  
Dariusz Głąbicki ◽  
Anna Buczyńska ◽  
Karolina Owczarz ◽  
...  

Mining operations cause negative changes in the environment. Therefore, such areas require constant monitoring, which can benefit from remote sensing data. In this article, research was carried out on the environmental impact of underground hard coal mining in the Bogdanka mine, located in the southeastern Poland. For this purpose, spectral indexes, satellite radar interferometry, Geographic Information System (GIS) tools and machine learning algorithms were utilized. Based on optical, radar, geological, hydrological and meteorological data, a spatial model was developed to determine the statistical significance of the selected factors’ individual impact on the occurrence of wetlands. Obtained results show that Normalized Difference Vegetation Index (NDVI) change, terrain height, groundwater level and terrain displacement had a considerable influence on the occurrence of wetlands in the research area. Moreover, the machine learning model developed using the Random Forest algorithm allowed for an efficient determination of potential flooding zones based on a set of spatial variables, correctly detecting 76% area of wetlands. Finally, the GWR (Geographically Weighted Regression (GWR) modelling enabled identification of local anomalies of selected factors’ influence on the occurrence of wetlands, which in turn helped to understand the causes of wetland formation.


Geosciences ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 223
Author(s):  
Maciej Adamiak ◽  
Iwona Jażdżewska ◽  
Marta Nalej

Small cities are an important part of the settlement system, a link between rural areas and large cities. Although they perform important functions, research focuses on large cities and metropolises while marginalizing small cities, the study of which is of great importance to progress in social sciences, geography, and urban planning. The main goal of this paper was to verify the impact of selected socio-economic factors on the share of built-up areas in 665 small Polish cities in 2019. Data from the Database of Topographic Objects (BDOT), Sentinel-2 satellite imagery from 2015 and 2019, and Local Data Bank by Statistics Poland form 2019 were used in the research. A machine learning segmentation procedure was used to obtain the data on the occurrence of built-up areas. Hot Spot (Getis-Ord Gi*) analysis and geographically weighted regression (GWR) was applied to explain spatially varying impact of factors related to population, spatial and economic development, and living standards on the share of built-up areas in the area of small cities. Significant association was found between the population density and the share of built-up areas in the area of the cities studied. The influence of the other socio-economic factors examined, related to the spatial and economic development of the cities and the quality of life of the inhabitants, showed great regional variation. The results also indicated that the share of built-up areas in the area of the cities under study is a result of the conditions under which they were established and developed throughout their existence, and not only of the socio-economic factors affecting them at present.


2021 ◽  
Vol 13 (14) ◽  
pp. 7659
Author(s):  
Liangjun Yi ◽  
Wei Zhang ◽  
Yuanxin Liu ◽  
Weilin Zhang

China’s recent development has been nothing short of remarkable, but energy-saving, and environmental protection is still a serious problem. The improvement of energy efficiency (EE) is an important factor for China to better follow the path of energy conservation, sustainable development, and environmental protection. Meanwhile, market segmentation is a unique phenomenon in the process of China’s economic development. Hence, studying market segmentation on energy efficiency has positive significance for improving energy efficiency. The major objective of this study is to investigate the relationship between EE and market segmentation. This paper measures market segmentation by the Price-Based Approach, calculating EE by super slack-based measure (super-SBM), and integrated spatial Durbin model and geographically weighted regression model. Based on the panel data of 30 provinces in China from 1995 to 2018, this paper finds that: (1) Regional market segmentation has a significant negative effect on EE. Moreover, in terms of spatial effect, market segmentation has a positive spatial spillover on EE estimated by 0-1 matrix suggesting that market segmentation in the surrounding area has a positive impact on local EE. (2) The negative effect of Market segmentation on EE demonstrates the obvious regional difference: Eastern region > central region > western region. In addition, geographically weighted regression results show that the impact of market segmentation on EE shows that in regional spatial distribution, Shanghai, Jiangsu, Zhejiang, and Anhui have the strongest negative effect, second in Fujian, Jiangxi, Shandong, Henan, Hubei, Beijing, Tianjin, and Hebei. (3) This paper confirms that market segmentation can affect EE through local protectionism, technological difference, and scale effect. Finally, through the above research basis, put forward the corresponding policy suggestions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue-Yuan Lu ◽  
Xu Chen ◽  
Xue-Li Zhao ◽  
Dan-Jv Lv ◽  
Yan Zhang

AbstractUrbanization had a huge impact on the regional ecosystem net primary productivity (NPP). Although the urban heat island (UHI) caused by urbanization has been found to have a certain promoting effect on urban vegetation NPP, the factors on the impact still are not identified. In this study, the impact of urbanization on NPP was divided into direct impact (NPPdir) and indirect impact (NPPind), taking Kunming city as a case study area. Then, the spatial heterogeneity impact of land surface temperature (LST) on NPPind was analyzed based on the geographically weighted regression (GWR) model. The results indicated that NPP, LST, NPPdir and NPPind in 2001, 2009 and 2018 had significant spatial autocorrelation in Kunming based on spatial analytical model. LST had a positive impact on NPPind in the central area of Kunming. The positively correlation areas of LST on NPPind increased by 4.56%, and the NPPind caused by the UHI effect increased by an average of 4.423 gC m−2 from 2009 to 2018. GWR model can reveal significant spatial heterogeneity in the impacts of LST on NPPind. Overall, our findings indicated that LST has a certain role in promoting urban NPP.


Sign in / Sign up

Export Citation Format

Share Document