Unified Framework for Control of Machine Learning Tasks Towards Effective and Efficient Processing of Big Data

Author(s):  
Han Liu ◽  
Alexander Gegov ◽  
Mihaela Cocea
2020 ◽  
Author(s):  
John Hancock ◽  
Taghi M Khoshgoftaar

Abstract Gradient Boosted Decision Trees (GBDT's) are a powerful tool for classification and regression tasks in Big Data, Researchers should be familiar with the strengths and weaknesses of current implementations of GBDT's in order to use them effectively and make successful contributions. CatBoost is a member of the family of GBDT machine learning ensemble techniques. Since its debut in late 2018, researchers have ellCcessfully used CatBoost for machine learning studies involving Big Data. We take this opportunity to review recent research on CatBoost as it relates to Big Data, and learn best practices from studies that .55 CatBoost in a positive light, as well as studies where CatBoost does not outshine other techniques, since we can learn lessons from both types of scenarios. Furthermore, as a Decision Tree based algorithm, CatBoost is well-suited to machine learning tasks involving categorical, heterogeneous data. Recent work across multiple disciplines illustrates CatBoost's effectiveness and shortcomings in classification and regression tasks. Another important issue we expose in literature on CatBoost is its sensitivity to hyper-parameters and the importance of hyper-parameter tuning. One contribution we make is to take an interdisciplinary approach to cover studies related to CatBoost in a single work. This provides researchers an in-depth understanding to help clarify proper application of CatBoost in solving problems. To the best of our knowledge, this is the first survey that studies all works related to CatBoost in a single publication.


2020 ◽  
Author(s):  
John Hancock ◽  
Taghi M Khoshgoftaar

Abstract Gradient Boosted Decision Trees (GBDT’s) are a powerful tool for classification and regression tasks in Big Data. Researchers should be familiar with the strengths and weaknesses of current implementations of GBDT’s in order to use them effectively and make successful contributions. CatBoost is a member of the family of GBDT machine learning ensemble techniques. Since its debut in late 2018, researchers have successfully used CatBoost for machine learning studies involving Big Data. We take this opportunity to review recent research on CatBoost as it relates to Big Data, and learn best practices from studies that cast CatBoost in a positive light, as well as studies where CatBoost does not outshine other techniques, since we can learn lessons from both types of scenarios. Furthermore, as a Decision Tree based algorithm, CatBoost is well-suited to machine learning tasks involving categorical, heterogeneous data. Recent work across multiple disciplines illustrates CatBoost’s effectiveness and shortcomings in classification and regression tasks. Another important issue we expose in literature on CatBoost is its sensitivity to hyper-parameters and the importance of hyper-parameter tuning. One contribution we make is to take an interdisciplinary approach to cover studies related to CatBoost in a single work. This provides researchers an in-depth understanding to help clarify proper application of CatBoost in solving problems. To the best of our knowledge, this is the first survey that studies all works related to CatBoost in a single publication.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Wen Xiao ◽  
Juan Hu

Clustering is one of the most important unsupervised machine learning tasks, which is widely used in information retrieval, social network analysis, image processing, and other fields. With the explosive growth of data, the classical clustering algorithms cannot meet the requirements of clustering for big data. Spark is one of the most popular parallel processing platforms for big data, and many researchers have proposed many parallel clustering algorithms based on Spark. In this paper, the existing parallel clustering algorithms based on Spark are classified and summarized, the parallel design framework of each kind of algorithms is discussed, and after comparing different kinds of algorithms, the direction of the future research is discussed.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
John T. Hancock ◽  
Taghi M. Khoshgoftaar

Abstract Gradient Boosted Decision Trees (GBDT’s) are a powerful tool for classification and regression tasks in Big Data. Researchers should be familiar with the strengths and weaknesses of current implementations of GBDT’s in order to use them effectively and make successful contributions. CatBoost is a member of the family of GBDT machine learning ensemble techniques. Since its debut in late 2018, researchers have successfully used CatBoost for machine learning studies involving Big Data. We take this opportunity to review recent research on CatBoost as it relates to Big Data, and learn best practices from studies that cast CatBoost in a positive light, as well as studies where CatBoost does not outshine other techniques, since we can learn lessons from both types of scenarios. Furthermore, as a Decision Tree based algorithm, CatBoost is well-suited to machine learning tasks involving categorical, heterogeneous data. Recent work across multiple disciplines illustrates CatBoost’s effectiveness and shortcomings in classification and regression tasks. Another important issue we expose in literature on CatBoost is its sensitivity to hyper-parameters and the importance of hyper-parameter tuning. One contribution we make is to take an interdisciplinary approach to cover studies related to CatBoost in a single work. This provides researchers an in-depth understanding to help clarify proper application of CatBoost in solving problems. To the best of our knowledge, this is the first survey that studies all works related to CatBoost in a single publication.


Author(s):  
Turan G. Bali ◽  
Amit Goyal ◽  
Dashan Huang ◽  
Fuwei Jiang ◽  
Quan Wen

2019 ◽  
Vol 19 (25) ◽  
pp. 2301-2317 ◽  
Author(s):  
Ruirui Liang ◽  
Jiayang Xie ◽  
Chi Zhang ◽  
Mengying Zhang ◽  
Hai Huang ◽  
...  

In recent years, the successful implementation of human genome project has made people realize that genetic, environmental and lifestyle factors should be combined together to study cancer due to the complexity and various forms of the disease. The increasing availability and growth rate of ‘big data’ derived from various omics, opens a new window for study and therapy of cancer. In this paper, we will introduce the application of machine learning methods in handling cancer big data including the use of artificial neural networks, support vector machines, ensemble learning and naïve Bayes classifiers.


Sign in / Sign up

Export Citation Format

Share Document