Power Consumption Aware Machine Learning Attack for Feed-Forward Arbiter PUF

Author(s):  
Yusuke Nozaki ◽  
Masaya Yoshikawa
2015 ◽  
Vol 643 ◽  
pp. 109-116
Author(s):  
Daiki Oki ◽  
Satoru Kawauchi ◽  
Cong Bing Li ◽  
Masataka Kamiyama ◽  
Seiichi Banba ◽  
...  

This paper presents a power-efficient noise-canceling technique based on the feed-forward amplifiers, considering a fundamental tradeoff between noise figure (NF) and power consumption in the design of wide-band amplifiers. By suppressing the input signal of the noise cancellation amplifier, the nonlinear effect on the amplifier can be reduced, as well as the power consumption can be smaller. Furthermore, as a lower gain of the noise-canceling sub-amplifier can be achieved simultaneously, further reduction of the power consumption becomes possible. The verification of the proposed technique is conducted with Spectre simulation using 90nm CMOS process.


2019 ◽  
Vol 109 (05) ◽  
pp. 352-357
Author(s):  
C. Brecher ◽  
L. Gründel ◽  
L. Lienenlüke ◽  
S. Storms

Die Lageregelung von konventionellen Industrierobotern ist nicht auf den dynamischen Fräsprozess ausgelegt. Eine Möglichkeit, das Verhalten der Regelkreise zu optimieren, ist eine modellbasierte Momentenvorsteuerung, welche in dieser Arbeit aufgrund vieler Vorteile durch einen Machine-Learning-Ansatz erweitert wird. Hierzu wird die Umsetzung in Matlab und die simulative Evaluation erläutert, die im Anschluss das Potenzial dieses Konzeptes bestätigt.   The position control of conventional industrial robots is not designed for the dynamic milling process. One possibility to optimize the behavior of the control loops is a model-based feed-forward torque control which is supported by a machine learning approach due to many advantages. The implementation in Matlab and the simulative evaluation are explained, which subsequently confirms the potential of this concept.


Author(s):  
Tanujit Chakraborty

Decision tree algorithms have been among the most popular algorithms for interpretable (transparent) machine learning since the early 1980s. On the other hand, deep learning methods have boosted the capacity of machine learning algorithms and are now being used for non-trivial applications in various applied domains. But training a fully-connected deep feed-forward network by gradient-descent backpropagation is slow and requires arbitrary choices regarding the number of hidden units and layers. In this paper, we propose near-optimal neural regression trees, intending to make it much faster than deep feed-forward networks and for which it is not essential to specify the number of hidden units in the hidden layers of the neural network in advance. The key idea is to construct a decision tree and then simulate the decision tree with a neural network. This work aims to build a mathematical formulation of neural trees and gain the complementary benefits of both sparse optimal decision trees and neural trees. We propose near-optimal sparse neural trees (NSNT) that is shown to be asymptotically consistent and robust in nature. Additionally, the proposed NSNT model obtain a fast rate of convergence which is near-optimal up to some logarithmic factor. We comprehensively benchmark the proposed method on a sample of 80 datasets (40 classification datasets and 40 regression datasets) from the UCI machine learning repository. We establish that the proposed method is likely to outperform the current state-of-the-art methods (random forest, XGBoost, optimal classification tree, and near-optimal nonlinear trees) for the majority of the datasets.


Author(s):  
Saranya N ◽  
◽  
Kavi Priya S ◽  

In recent years, due to the increasing amounts of data gathered from the medical area, the Internet of Things are majorly developed. But the data gathered are of high volume, velocity, and variety. In the proposed work the heart disease is predicted using wearable devices. To analyze the data efficiently and effectively, Deep Canonical Neural Network Feed-Forward and Back Propagation (DCNN-FBP) algorithm is used. The data are gathered from wearable gadgets and preprocessed by employing normalization. The processed features are analyzed using a deep convolutional neural network. The DCNN-FBP algorithm is exercised by applying forward and backward propagation algorithm. Batch size, epochs, learning rate, activation function, and optimizer are the parameters used in DCNN-FBP. The datasets are taken from the UCI machine learning repository. The performance measures such as accuracy, specificity, sensitivity, and precision are used to validate the performance. From the results, the model attains 89% accuracy. Finally, the outcomes are juxtaposed with the traditional machine learning algorithms to illustrate that the DCNN-FBP model attained higher accuracy.


2021 ◽  
Vol 12 (2) ◽  
pp. 89
Author(s):  
As'ary Ramadhan

Estimasi biaya pengembangan proyek perangkat lunak merupakan salah satu masalah yang kritis dalam rekayasa perangkat lunak. Kegagalan dari proyek perangkat lunak diakibatkan ketidak akuratannya estimasi sumber daya yang dibutuhkan. Beberapa model telah dikembangkan dalam beberapa puluh tahun belakangan ini. Untuk meberikan keakuratan dalam estimasi biaya proyek perangkat lunak masih menjadi tantangan hingga saat ini. Tujuan dilakukannya penelitian ini meningkatkan akurasi estimasi biaya proyek perangkat lunak dengan menerapkan algoritma genetika sebagai proses pelatihan pada Feed Forward Neural Network Backpropagation (FFNN-BP) yang mengakomodasi formula dari Post Architecture Model (COCOMO II). Magnitude of Relative Error (MRE) dan Mean Magnitude of Relative-Error (MMRE) digunakan sebagai pengkuran indikasi kinerja. Hasil percobaan menunjukkan bahwa model yang diusulkan memberikan hasil estimasi biaya proyek perangkat lunak menjadi lebih akurat dari COCOMO II dan FFNN-BP. Dalam kasus ini MMRE untuk COCOMO II adalah 74.68%, FFNN-BP adalah 39.90% .  Kata kunci: COCOMO II, Machine Learning, Proyek Manajemen IT, Backpropagation


Author(s):  
Gonzalo Vergara ◽  
Juan J. Carrasco ◽  
Jesus Martínez-Gómez ◽  
Manuel Domínguez ◽  
José A. Gámez ◽  
...  

The study of energy efficiency in buildings is an active field of research. Modeling and predicting energy related magnitudes leads to analyze electric power consumption and can achieve economical benefits. In this study, classical time series analysis and machine learning techniques, introducing clustering in some models, are applied to predict active power in buildings. The real data acquired corresponds to time, environmental and electrical data of 30 buildings belonging to the University of León (Spain). Firstly, we segmented buildings in terms of their energy consumption using principal component analysis. Afterwards, we applied state of the art machine learning methods and compare between them. Finally, we predicted daily electric power consumption profiles and compare them with actual data for different buildings. Our analysis shows that multilayer perceptrons have the lowest error followed by support vector regression and clustered extreme learning machines. We also analyze daily load profiles on weekdays and weekends for different buildings.


Author(s):  
Sidartha A. L. Carvalho ◽  
Lucas M. F. Harada ◽  
Rafael N. Lima ◽  
Carolina M. A. Barbosa ◽  
Daniel C. Cunha ◽  
...  

Author(s):  
Khaled Assi ◽  
Syed Masiur Rahman ◽  
Umer Mansoor ◽  
Nedal Ratrout

Predicting crash injury severity is a crucial constituent of reducing the consequences of traffic crashes. This study developed machine learning (ML) models to predict crash injury severity using 15 crash-related parameters. Separate ML models for each cluster were obtained using fuzzy c-means, which enhanced the predicting capability. Finally, four ML models were developed: feed-forward neural networks (FNN), support vector machine (SVM), fuzzy C-means clustering based feed-forward neural network (FNN-FCM), and fuzzy c-means based support vector machine (SVM-FCM). Features that were easily identified with little investigation on crash sites were used as an input so that the trauma center can predict the crash severity level based on the initial information provided from the crash site and prepare accordingly for the treatment of the victims. The input parameters mainly include vehicle attributes and road condition attributes. This study used the crash database of Great Britain for the years 2011–2016. A random sample of crashes representing each year was used considering the same share of severe and non-severe crashes. The models were compared based on injury severity prediction accuracy, sensitivity, precision, and harmonic mean of sensitivity and precision (i.e., F1 score). The SVM-FCM model outperformed the other developed models in terms of accuracy and F1 score in predicting the injury severity level of severe and non-severe crashes. This study concluded that the FCM clustering algorithm enhanced the prediction power of FNN and SVM models.


Sign in / Sign up

Export Citation Format

Share Document