Graphical Models for Eliciting Structural Information

Author(s):  
Federico M. Stefanini
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Nathan P. Gill ◽  
Raji Balasubramanian ◽  
James R. Bain ◽  
Michael J. Muehlbauer ◽  
William L. Lowe ◽  
...  

Abstract Background  Construction of networks from cross-sectional biological data is increasingly common. Many recent methods have been based on Gaussian graphical modeling, and prioritize estimation of conditional pairwise dependencies among nodes in the network. However, challenges remain on how specific paths through the resultant network contribute to overall ‘network-level’ correlations. For biological applications, understanding these relationships is particularly relevant for parsing structural information contained in complex subnetworks. Results We propose the pair-path subscore (PPS), a method for interpreting Gaussian graphical models at the level of individual network paths. The scoring is based on the relative importance of such paths in determining the Pearson correlation between their terminal nodes. PPS is validated using human metabolomics data from the Hyperglycemia and adverse pregnancy outcome (HAPO) study, with observations confirming well-documented biological relationships among the metabolites. We also highlight how the PPS can be used in an exploratory fashion to generate new biological hypotheses. Our method is implemented in the R package , available at https://github.com/nathan-gill/pps. Conclusions The PPS can be used to probe network structure on a finer scale by investigating which paths in a potentially intricate topology contribute most substantially to marginal behavior. Adding PPS to the network analysis toolkit may enable researchers to ask new questions about the relationships among nodes in network data.


2021 ◽  
Author(s):  
Viet Anh Nguyen ◽  
Daniel Kuhn ◽  
Peyman Mohajerin Esfahani

Note. The best result in each experiment is highlighted in bold.The optimal solutions of many decision problems such as the Markowitz portfolio allocation and the linear discriminant analysis depend on the inverse covariance matrix of a Gaussian random vector. In “Distributionally Robust Inverse Covariance Estimation: The Wasserstein Shrinkage Estimator,” Nguyen, Kuhn, and Mohajerin Esfahani propose a distributionally robust inverse covariance estimator, obtained by robustifying the Gaussian maximum likelihood problem with a Wasserstein ambiguity set. In the absence of any prior structural information, the estimation problem has an analytical solution that is naturally interpreted as a nonlinear shrinkage estimator. Besides being invertible and well conditioned, the new shrinkage estimator is rotation equivariant and preserves the order of the eigenvalues of the sample covariance matrix. If there are sparsity constraints, which are typically encountered in Gaussian graphical models, the estimation problem can be solved using a sequential quadratic approximation algorithm.


Author(s):  
R.M. Glaeser ◽  
S.B. Hayward

Highly ordered or crystalline biological macromolecules become severely damaged and structurally disordered after a brief electron exposure. Evidence that damage and structural disorder are occurring is clearly given by the fading and eventual disappearance of the specimen's electron diffraction pattern. The fading and disappearance of sharp diffraction spots implies a corresponding disappearance of periodic structural features in the specimen. By the same token, there is a oneto- one correspondence between the disappearance of the crystalline diffraction pattern and the disappearance of reproducible structural information that can be observed in the images of identical unit cells of the object structure. The electron exposures that result in a significant decrease in the diffraction intensity will depend somewhat upon the resolution (Bragg spacing) involved, and can vary considerably with the chemical makeup and composition of the specimen material.


Author(s):  
S. W. Hui ◽  
T. P. Stewart

Direct electron microscopic study of biological molecules has been hampered by such factors as radiation damage, lack of contrast and vacuum drying. In certain cases, however, the difficulties may be overcome by using redundent structural information from repeating units and by various specimen preservation methods. With bilayers of phospholipids in which both the solid and fluid phases co-exist, the ordering of the hydrocarbon chains may be utilized to form diffraction contrast images. Domains of different molecular packings may be recgnizable by placing properly chosen filters in the diffraction plane. These domains would correspond to those observed by freeze fracture, if certain distinctive undulating patterns are associated with certain molecular packing, as suggested by X-ray diffraction studies. By using an environmental stage, we were able to directly observe these domains in bilayers of mixed phospholipids at various temperatures at which their phases change from misible to inmissible states.


Author(s):  
M. Müller ◽  
R. Hermann

Three major factors must be concomitantly assessed in order to extract relevant structural information from the surface of biological material at high resolution (2-3nm).Procedures based on chemical fixation and dehydration in graded solvent series seem inappropriate when aiming for TEM-like resolution. Cells inevitably shrink up to 30-70% of their initial volume during gehydration; important surface components e.g. glycoproteins may be lost. These problems may be circumvented by preparation techniques based on cryofixation. Freezedrying and freeze-substitution followed by critical point drying yields improved structural preservation in TEM. An appropriate preservation of dimensional integrity may be achieved by freeze-drying at - 85° C. The sample shrinks and may partially collapse as it is warmed to room temperature for subsequent SEM study. Observations at low temperatures are therefore a necessary prerequisite for high fidelity SEM. Compromises however have been unavoidable up until now. Aldehyde prefixation is frequently needed prior to freeze drying, rendering the sample resistant to treatment with distilled water.


Author(s):  
D. Van Dyck

An (electron) microscope can be considered as a communication channel that transfers structural information between an object and an observer. In electron microscopy this information is carried by electrons. According to the theory of Shannon the maximal information rate (or capacity) of a communication channel is given by C = B log2 (1 + S/N) bits/sec., where B is the band width, and S and N the average signal power, respectively noise power at the output. We will now apply to study the information transfer in an electron microscope. For simplicity we will assume the object and the image to be onedimensional (the results can straightforwardly be generalized). An imaging device can be characterized by its transfer function, which describes the magnitude with which a spatial frequency g is transferred through the device, n is the noise. Usually, the resolution of the instrument ᑭ is defined from the cut-off 1/ᑭ beyond which no spadal information is transferred.


Author(s):  
Weiping Liu ◽  
Jennifer Fung ◽  
W.J. de Ruijter ◽  
Hans Chen ◽  
John W. Sedat ◽  
...  

Electron tomography is a technique where many projections of an object are collected from the transmission electron microscope (TEM), and are then used to reconstruct the object in its entirety, allowing internal structure to be viewed. As vital as is the 3-D structural information and with no other 3-D imaging technique to compete in its resolution range, electron tomography of amorphous structures has been exercised only sporadically over the last ten years. Its general lack of popularity can be attributed to the tediousness of the entire process starting from the data collection, image processing for reconstruction, and extending to the 3-D image analysis. We have been investing effort to automate all aspects of electron tomography. Our systems of data collection and tomographic image processing will be briefly described.To date, we have developed a second generation automated data collection system based on an SGI workstation (Fig. 1) (The previous version used a micro VAX). The computer takes full control of the microscope operations with its graphical menu driven environment. This is made possible by the direct digital recording of images using the CCD camera.


Author(s):  
Bruno Schueler ◽  
Robert W. Odom

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) provides unique capabilities for elemental and molecular compositional analysis of a wide variety of surfaces. This relatively new technique is finding increasing applications in analyses concerned with determining the chemical composition of various polymer surfaces, identifying the composition of organic and inorganic residues on surfaces and the localization of molecular or structurally significant secondary ions signals from biological tissues. TOF-SIMS analyses are typically performed under low primary ion dose (static SIMS) conditions and hence the secondary ions formed often contain significant structural information.This paper will present an overview of current TOF-SIMS instrumentation with particular emphasis on the stigmatic imaging ion microscope developed in the authors’ laboratory. This discussion will be followed by a presentation of several useful applications of the technique for the characterization of polymer surfaces and biological tissues specimens. Particular attention in these applications will focus on how the analytical problem impacts the performance requirements of the mass spectrometer and vice-versa.


Author(s):  
S.R. Glanvill

This paper summarizes the application of ultramicrotomy as a specimen preparation technique for some of the Materials Science applications encountered over the past two years. Specimens 20 nm thick by hundreds of μm lateral dimension are readily prepared for electron beam analysis. Materials examined include metals, plastics, ceramics, superconductors, glassy carbons and semiconductors. We have obtain chemical and structural information from these materials using HRTEM, CBED, EDX and EELS analysis. This technique has enabled cross-sectional analysis of surfaces and interfaces of engineering materials and solid state electronic devices, as well as interdiffusion studies across adjacent layers.Samples are embedded in flat embedding moulds with Epon 812 epoxy resin / Methyl Nadic Anhydride mixture, using DY064 accelerator to promote the reaction. The embedded material is vacuum processed to remove trapped air bubbles, thereby improving the strength and sectioning qualities of the cured block. The resin mixture is cured at 60 °C for a period of 80 hr and left to equilibrate at room temperature.


Author(s):  
Jeffry A. Reidler ◽  
John P. Robinson

We have prepared two-dimensional (2D) crystals of tetanus toxin using procedures developed by Uzgiris and Kornberg for the directed production of 2D crystals of monoclonal antibodies at an antigen-phospholipid monolayer interface. The tetanus toxin crystals were formed using a small mole fraction of the natural receptor, GT1, incorporated into phosphatidyl choline monolayers. The crystals formed at low concentration overnight. Two dimensional crystals of this type are particularly useful for structure determination using electron microscopy and computer image refinement. Three dimensional (3D) structural information can be derived from these crystals by computer reconstruction of photographs of toxin crystals taken at different tilt angles. Such 3D reconstructions may help elucidate the mechanism of entry of the enzymatic subunit of toxins into cells, particularly since these crystals form directly on a membrane interface at similar concentrations of ganglioside GT1 to the natural cellular receptors.


Sign in / Sign up

Export Citation Format

Share Document