Purification and Characterisation of His-Tagged Antibody Fragments

2001 ◽  
pp. 243-256 ◽  
Author(s):  
Markus Fiedler ◽  
Arne Skerra
Keyword(s):  
Author(s):  
U. Aebi ◽  
L.E. Buhle ◽  
W.E. Fowler

Many important supramolecular structures such as filaments, microtubules, virus capsids and certain membrane proteins and bacterial cell walls exist as ordered polymers or two-dimensional crystalline arrays in vivo. In several instances it has been possible to induce soluble proteins to form ordered polymers or two-dimensional crystalline arrays in vitro. In both cases a combination of electron microscopy of negatively stained specimens with analog or digital image processing techniques has proven extremely useful for elucidating the molecular and supramolecular organization of the constituent proteins. However from the reconstructed stain exclusion patterns it is often difficult to identify distinct stain excluding regions with specific protein subunits. To this end it has been demonstrated that in some cases this ambiguity can be resolved by a combination of stoichiometric labeling of the ordered structures with subunit-specific antibody fragments (e.g. Fab) and image processing of the electron micrographs recorded from labeled and unlabeled structures.


2019 ◽  
Author(s):  
Antoine Maruani ◽  
Peter A. Szijj ◽  
Calise Bahou ◽  
João C. F. Nogueira ◽  
Stephen Caddick ◽  
...  

<p>Diseases are multifactorial, with redundancies and synergies between various pathways. However, most of the antibody-based therapeutics in clinical trials and on the market interact with only one target thus limiting their efficacy. The targeting of multiple epitopes could improve the therapeutic index of treatment and counteract mechanisms of resistance. To this effect, a new class of therapeutics emerged: bispecific antibodies.</p><p>Bispecific formation using chemical methods is rare and low yielding and/or requires a large excess of one of the two proteins to avoid homodimerisation. In order for chemically prepared bispecifics to deliver their full potential, high-yielding, modular and reliable cross-linking technologies are required. Herein, we describe a novel approach not only for the rapid and high-yielding chemical generation of bispecific antibodies from native antibody fragments, but also for the site-specific dual functionalisation of the resulting bioconjugates. Based on orthogonal clickable functional groups, this strategy enables the assembly of functionalised bispecifics with controlled loading in a modular and convergent manner.</p>


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Julien Edeline ◽  
Roch Houot ◽  
Aurélien Marabelle ◽  
Marion Alcantara

AbstractChimeric antigen receptor (CAR)-modified T cells and BiTEs are both immunotherapies which redirect T cell specificity against a tumor-specific antigen through the use of antibody fragments. They demonstrated remarkable efficacy in B cell hematologic malignancies, thus paving the way for their development in solid tumors. Nonetheless, the use of such new drugs to treat solid tumors is not straightforward. So far, the results from early phase clinical trials are not as impressive as expected but many improvements are under way. In this review we present an overview of the clinical development of CAR-T cells and BiTEs targeting the main antigens expressed by solid tumors. We emphasize the most frequent hurdles encountered by either CAR-T cells or BiTEs, or both, and summarize the strategies that have been proposed to overcome these obstacles.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 186
Author(s):  
Jia-Huan Qu ◽  
Karen Leirs ◽  
Remei Escudero ◽  
Žiga Strmšek ◽  
Roman Jerala ◽  
...  

To date, surface plasmon resonance (SPR) biosensors have been exploited in numerous different contexts while continuously pushing boundaries in terms of improved sensitivity, specificity, portability and reusability. The latter has attracted attention as a viable alternative to disposable biosensors, also offering prospects for rapid screening of biomolecules or biomolecular interactions. In this context here, we developed an approach to successfully regenerate a fiber-optic (FO)-SPR surface when utilizing cobalt (II)-nitrilotriacetic acid (NTA) surface chemistry. To achieve this, we tested multiple regeneration conditions that can disrupt the NTA chelate on a surface fully saturated with His6-tagged antibody fragments (scFv-33H1F7) over ten regeneration cycles. The best surface regeneration was obtained when combining 100 mM EDTA, 500 mM imidazole and 0.5% SDS at pH 8.0 for 1 min with shaking at 150 rpm followed by washing with 0.5 M NaOH for 3 min. The true versatility of the established approach was proven by regenerating the NTA surface for ten cycles with three other model system bioreceptors, different in their size and structure: His6-tagged SARS-CoV-2 spike fragment (receptor binding domain, RBD), a red fluorescent protein (RFP) and protein origami carrying 4 RFPs (Tet12SN-RRRR). Enabling the removal of His6-tagged bioreceptors from NTA surfaces in a fast and cost-effective manner can have broad applications, spanning from the development of biosensors and various biopharmaceutical analyses to the synthesis of novel biomaterials.


2021 ◽  
Vol 11 (10) ◽  
pp. 4659
Author(s):  
Eun-Jung Kim ◽  
Gyu-Min Im ◽  
Chang-Soo Lee ◽  
Yun-Gon Kim ◽  
Byoung Joon Ko ◽  
...  

The calcium-binding protein S100A9 regulates inflammatory processes and the immune response. It is overexpressed in a variety of inflammatory and oncologic conditions. In this study, we produced a recombinant human S100A9 (hS100A9) antigen with high yield and purity and used it to generate a hybridoma cell culture-based monoclonal anti-hS100A9 antibody. We selected five anti-hS100A9 antibodies from cell supernatants that showed high antigen binding efficiency and identified the nucleotide sequences of three antibodies: two with high effective concentration values and one with the lowest value. The antigen and antibody development procedures described herein are useful for producing large amounts of monoclonal antibodies against hS100A9 and other antigens of interest. The nucleotide sequences of the anti-hS100A9 monoclonal antibody revealed herein will be helpful in the generation of recombinant antibodies or antibody fragments against hS100A9.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 874
Author(s):  
Stefan Kittler ◽  
Mihail Besleaga ◽  
Julian Ebner ◽  
Oliver Spadiut

In the past 30 years, highly specific drugs, known as antibodies, have conquered the biopharmaceutical market. In addition to monoclonal antibodies (mAbs), antibody fragments are successfully applied. However, recombinant production faces challenges. Process analytical tools for monitoring and controlling production processes are scarce and time-intensive. In the downstream process (DSP), affinity ligands are established as the primary and most important step, while the application of other methods is challenging. The use of these affinity ligands as monitoring tools would enable a platform technology to monitor process steps in the USP and DSP. In this review, we highlight the current applications of affinity ligands (proteins A, G, and L) and discuss further applications as process analytical tools.


2021 ◽  
Author(s):  
Francisco J. Reche-Perez ◽  
Simona Plesselova ◽  
Eduardo De los Reyes-Berbel ◽  
Mariano Ortega-Muñoz ◽  
F. Javier Lopez-Jaramillo ◽  
...  

The use of the specific binding properties of monoclonal antibody fragments such as single-chain variable fragments (ScFv) for the selective delivery of antitumor therapeutics for cancer cells is attractive due...


Sign in / Sign up

Export Citation Format

Share Document