scholarly journals A Systems Process Lifecycle Standard for Very Small Entities: Development and Pilot Trials

Author(s):  
Claude Y. Laporte ◽  
Rory V. O’Connor
Keyword(s):  
TAPPI Journal ◽  
2011 ◽  
Vol 10 (5) ◽  
pp. 21-28 ◽  
Author(s):  
CARL HOUTMAN ◽  
ERIC HORN

Pilot data indicate that wood chip pretreatment with oxalic acid reduced the specific energy required to make thermomechanical pulp. A combined oxalic acid/bisulfite treatment resulted in 21% refiner energy savings and 13% increase in brightness for aspen. A low level of oxalic acid treatment was effective for spruce. Energy savings of 30% was observed with no significant change in strength properties. Adding bisulfite did not significantly increase the brightness of the spruce pulp. For pine, the optimum treatment was a moderate level of oxalic acid, which resulted in 34% energy savings and an increase in strength properties. For all of these treatments 1–3 w/w % carbohydrates were recovered, which can be fermented to produce ethanol. The extract sugar solution contained significant quantities of arabinose.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
M. Lewis ◽  
K. Bromley ◽  
C. J. Sutton ◽  
G. McCray ◽  
H. L. Myers ◽  
...  

Abstract Background The current CONSORT guidelines for reporting pilot trials do not recommend hypothesis testing of clinical outcomes on the basis that a pilot trial is under-powered to detect such differences and this is the aim of the main trial. It states that primary evaluation should focus on descriptive analysis of feasibility/process outcomes (e.g. recruitment, adherence, treatment fidelity). Whilst the argument for not testing clinical outcomes is justifiable, the same does not necessarily apply to feasibility/process outcomes, where differences may be large and detectable with small samples. Moreover, there remains much ambiguity around sample size for pilot trials. Methods Many pilot trials adopt a ‘traffic light’ system for evaluating progression to the main trial determined by a set of criteria set up a priori. We construct a hypothesis testing approach for binary feasibility outcomes focused around this system that tests against being in the RED zone (unacceptable outcome) based on an expectation of being in the GREEN zone (acceptable outcome) and choose the sample size to give high power to reject being in the RED zone if the GREEN zone holds true. Pilot point estimates falling in the RED zone will be statistically non-significant and in the GREEN zone will be significant; the AMBER zone designates potentially acceptable outcome and statistical tests may be significant or non-significant. Results For example, in relation to treatment fidelity, if we assume the upper boundary of the RED zone is 50% and the lower boundary of the GREEN zone is 75% (designating unacceptable and acceptable treatment fidelity, respectively), the sample size required for analysis given 90% power and one-sided 5% alpha would be around n = 34 (intervention group alone). Observed treatment fidelity in the range of 0–17 participants (0–50%) will fall into the RED zone and be statistically non-significant, 18–25 (51–74%) fall into AMBER and may or may not be significant and 26–34 (75–100%) fall into GREEN and will be significant indicating acceptable fidelity. Discussion In general, several key process outcomes are assessed for progression to a main trial; a composite approach would require appraising the rules of progression across all these outcomes. This methodology provides a formal framework for hypothesis testing and sample size indication around process outcome evaluation for pilot RCTs.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1595
Author(s):  
Asif Javed ◽  
Peter Rättö ◽  
Lars Järnström ◽  
Henrik Ullsten

One severe weakness of most biopolymers, in terms of their use as packaging materials, is their relatively high solubility in water. The addition of kraft lignin to starch coating formulations has been shown to reduce the water solubility of starch in dry coatings. However, lignin may also migrate into aqueous solutions. For this paper, kraft lignin isolated using the LignoBoost process was used in order to examine the effect of pH level on the solubility of lignin with and without ammonium zirconium carbonate (AZC). Machine-glazed (MG) paper was coated in a pilot coating machine, with the moving substrate at high speed, and laboratory-coated samples were used as a reference when measuring defects (number of pinholes). Kraft lignin became soluble in water at lower pH levels when starch was added to the solution, due to the interactions between starch and lignin. This made it possible to lower the pH of the coating solutions, resulting in increased water stability of the dry samples; that is, the migration of lignin to the model liquids decreased when the pH of the coating solutions was reduced. No significant difference was observed in the water vapor transmission rate (WVTR) between high and low pH for the pilot-coated samples. The addition of AZC to the formulation reduced the migration of lignin from the coatings to the model liquids and led to an increase in the water contact angle, but also increased the number of pinholes in the pilot-coated samples.


BMJ Open ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. e048178
Author(s):  
Katie Mellor ◽  
Saskia Eddy ◽  
Nicholas Peckham ◽  
Christine M Bond ◽  
Michael J Campbell ◽  
...  

ObjectivesPrespecified progression criteria can inform the decision to progress from an external randomised pilot trial to a definitive randomised controlled trial. We assessed the characteristics of progression criteria reported in external randomised pilot trial protocols and results publications, including whether progression criteria were specified a priori and mentioned in prepublication peer reviewer reports.Study designMethodological review.MethodsWe searched four journals through PubMed: British Medical Journal Open, Pilot and Feasibility Studies, Trials and Public Library of Science One. Eligible publications reported external randomised pilot trial protocols or results, were published between January 2018 and December 2019 and reported progression criteria. We double data extracted 25% of the included publications. Here we report the progression criteria characteristics.ResultsWe included 160 publications (123 protocols and 37 completed trials). Recruitment and retention were the most frequent indicators contributing to progression criteria. Progression criteria were mostly reported as distinct thresholds (eg, achieving a specific target; 133/160, 83%). Less than a third of the planned and completed pilot trials that included qualitative research reported how these findings would contribute towards progression criteria (34/108, 31%). The publications seldom stated who established the progression criteria (12/160, 7.5%) or provided rationale or justification for progression criteria (44/160, 28%). Most completed pilot trials reported the intention to proceed to a definitive trial (30/37, 81%), but less than half strictly met all of their progression criteria (17/37, 46%). Prepublication peer reviewer reports were available for 153/160 publications (96%). Peer reviewer reports for 86/153 (56%) publications mentioned progression criteria, with peer reviewers of 35 publications commenting that progression criteria appeared not to be specified.ConclusionsMany external randomised pilot trial publications did not adequately report or propose prespecified progression criteria to inform whether to proceed to a future definitive randomised controlled trial.


2012 ◽  
Vol 11 (1) ◽  
pp. 58 ◽  
Author(s):  
Sophie Penning ◽  
Aaron J Le Compte ◽  
Paul Massion ◽  
Katherine T Moorhead ◽  
Christopher G Pretty ◽  
...  

2021 ◽  
Vol 243 ◽  
pp. 106088
Author(s):  
Isabella Maria Friederike Kratzer ◽  
Mollie Elizabeth Brooks ◽  
Sabri Bilgin ◽  
Süleyman Özdemir ◽  
Lotte Kindt-Larsen ◽  
...  

2021 ◽  
Author(s):  
Raymond Nicholas Burke ◽  
Abdallah Mohd AR Al Tamimi ◽  
Wael Salem Al Shouly ◽  
Mohamed Ali Jaber ◽  
David Erik Baetsen

Abstract Industry-wide, the degradation and corrosion of steel infrastructure and the associated maintenance to prevent or mitigate this, poses a heavy environmental and operational burden across many industry segments. To address these challenges, ADNOC Group Technology, led by our Non-Metallic Steering Committee and ADNOC Upstream, in partnership with several selected specialist product companies, is deploying a range of innovative solutions as pilot trials within a holistic R&D program – which is aiming to transform our production and processing facilities, with a close focus on integrity management – and specifically we are assessing the deployment of non-metallic pipelines, storage and process vessels as well as downhole tubing and casing. Focusing specifically on flowlines and pipelines - traditional steel pipes used in the oil patch are burdensome to store, transport and install, as well as susceptible to degradation, corrosion-driven wall loss in challenging operational environments, such as those found Onshore and Offshore Abu Dhabi. This vulnerability results in increased operating risks as facilities mature, adding cost and time for inspection, maintenance and eventually - replacements that will lead to production deferrals or interruptions. A range of non-metallic pipeline technologies are being assessed and piloted in this program, including stand-alone extruded polymeric pipe and liners, Reinforced Thermoplastic Pipe (RTP) used Onshore and Offshore, specialized non-metallic flexible pipelines for Offshore including Thermoplastic Composite Pipe (TCP) and downhole tubulars. The methodology involves placing segments of RTP into live pipeline systems for a finite duration of operation – usually one year – and then removing sections to assess any degradation in performance, or capability of the RTP during that time. These test results will be the subject of a further publication at the end of this trial period. In this paper, we will focus on RTP piloting Onshore and specifically mention a unique trial in an ultra-sour gas field, where the technology has already delivered the required performance: safely transporting gas with levels of H2S up to 10% by volume. This trial also proves that specifically engineered non-metallic products may be successfully operated at the high temperature and high pressure (HPHT) levels that are characteristic of our reservoirs.


2018 ◽  
Vol 30 (5) ◽  
pp. 717-728 ◽  
Author(s):  
Chetan Thakur ◽  
Kazunori Ogawa ◽  
Yuichi Kurita ◽  
◽  
◽  
...  

In this paper we discuss the active and passive nature of the assistive wearable gait augment suit (AWGAS). AWGAS is a soft, wearable, lightweight, and assists walking gait by reducing muscle activation during walking. It augments walking by reducing the muscle activation of the posterior and anterior muscles of the lower limb. The suit uses pneumatic gel muscles (PGM), foot sensors for gait detection, and pneumatic valves to control the air pressure. The assistive force is provided using the motion in loop feedforward control loop using foot sensors in shoes. PGMs are actuated with the help of pneumatic valves and portable air tanks. The elastic nature of the PGM allows AWGAS to assist walking in the absence of the air supply which makes AWGAS both active and passive walking assist suit. To evaluate the active and passive nature of the AWGAS, we experimented to measure surface EMG (sEMG) of the lower limb muscles. sEMG was recorded for unassisted walking, i.e., without the suit, passive assisted walking, i.e., wearing the suit with no air supply and active assisted walking, i.e., wearing the suit with air supply set at 60 kPa. The results shows reduction in the muscle activity for both passive and active assisted walking as compared to unassisted walking. The pilot trials of the AWGAS were conducted in collaboration with local farmers in the Hiroshima prefecture in Japan where feedback received is complementing the results obtained during the experiments.


2020 ◽  
Author(s):  
Martyn Lewis ◽  
Kieran Bromley ◽  
Christopher J Sutton ◽  
Gareth McCray ◽  
Helen Lucy Myers ◽  
...  

Abstract BackgroundThe current CONSORT guidelines for reporting pilot trials do not recommend hypothesis testing of clinical outcomes on the basis that a pilot trial is under-powered to detect such differences and this is the aim of the main trial. It states that primary evaluation should focus on descriptive analysis of feasibility/process outcomes (e.g. recruitment, adherence, treatment fidelity). Whilst the argument for not testing clinical outcomes is justifiable, the same does not necessarily apply to feasibility/process outcomes, where differences may be large and detectable with small samples. Moreover, there remains much ambiguity around sample size for pilot trials. MethodsMany pilot trials adopt a ‘traffic light’ system for evaluating progression to the main trial determined by a set of criteria set up a priori. We construct a hypothesis-testing approach for binary feasibility outcomes focused around this system that tests against being in the RED zone (unacceptable outcome) based on an expectation of being in the GREEN zone (acceptable outcome) and choose the sample size to give high power to reject being in the RED zone if the GREEN zone holds true. Pilot point estimates falling in the RED zone will be statistically non-significant and in the GREEN zone will be significant; the AMBER zone designates potentially acceptable outcome and statistical tests may be significant or non-significant.ResultsFor example, in relation to treatment fidelity, if we assume the upper boundary of the RED zone is 50% and the lower boundary of the GREEN zone is 75% (designating unacceptable and acceptable treatment fidelity, respectively), the sample size required for analysis given 90% power and one-sided 5% alpha would be around n=35 (intervention group alone). Observed treatment fidelity in the range of 0-17 participants (0-50%) will fall into the RED zone and be statistically non-significant; 18-26 (51-74%) fall into AMBER and may or may not be significant; 27-35 (75-100%) fall into GREEN and will be significant indicating acceptable fidelity.DiscussionIn general, several key process outcomes are assessed for progression to a main trial; a composite approach would require appraising the rules of progression across all these outcomes. This methodology provides a formal framework for hypothesis-testing and sample size indication around process outcome evaluation for pilot RCTs.


Sign in / Sign up

Export Citation Format

Share Document