CD36 Expression in Human Monocytic Leukemia Cell Lines: THP-1 and THP-1 Subtype, Show Different Expressions of Type I and Type II Scavenger Receptors

Author(s):  
Ryo Sugano ◽  
Mariko Harada-Shiba ◽  
Noriyasu Nishimura ◽  
Yasuko Miyake ◽  
Jun An ◽  
...  
1999 ◽  
Vol 54 (12) ◽  
pp. 1075-1083 ◽  
Author(s):  
Frank I. Bohnenstengel ◽  
Klaus G. Steube ◽  
Corinna Meyer ◽  
Hilmar Quentmeier ◽  
Bambang W. Nugroho ◽  
...  

Thirteen naturally occurring 1H-cyclopenta[b]benzofuran lignans of the rocaglamide type as well as one naturally occurring aglain congener all of them isolated from three Aglaia species (Aglaia duperreana, A. oligophylla and A. spectabilis) collected in Vietnam were studied for their antiproliferative effects using the human monocytic leukemia cell lines MONO-MAC-1 and MONO-MAC-6. Only rocaglamide type compounds showed significant inhibition of [3H-]thymidine incorporation and the most active compound didesmethylrocaglamide inhibited cell growth in a similar concentration range as the well-known anticancer drug vinblastine sulfate. Detailed structure-activity analysis indicated that the OH-group at C-8b which is a common structural feature of most naturally occurring rocaglamide compounds is essential for the described antiproliferative activity since replacement of this group by methylation led to a complete loss of the inhibitory activity for the resulting derivative. Rocaglamide derivatives rapidly inhibited DNA as well as protein biosynthesis of MONOMAC- 6 cells at concentrations well below those of actinomycin D or cycloheximide which were used as positive controls in the respective experiments. Didesmethylrocaglamide was furthermore able to induce growth arrest of MONO-MAC-1 cells in the G2/M and probably G0/Gl-phase of the cell cycle with no morphological indication of cellular damage. Our data suggests that 1H-cyclopenta[b]benzofuran lignans of the rocaglamide type act primarily by a cytostatic mechanism.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 976-976
Author(s):  
Hiroyuki Takamatsu ◽  
Xingmin Feng ◽  
Xuzhang Lu ◽  
Tatsuya Chuhjo ◽  
Katsuya Okawa ◽  
...  

Abstract Although aplastic anemia (AA) is a T-cell mediated disease, recent studies have revealed the presence of antibodies (Abs) specific to proteins derived from hematopoietic progenitor cells in the serum of AA patients. It is as yet unclear whether these auto-Abs play some roles in the pathophysiology of AA. We previously demonstrated that Abs specific to moesin, a membrane-cytoskeleton linker protein in the cytoplasm, were detectable in approximately 37% of AA patients. Some reports identified moesin-like molecules on the surface of blood cells such as T cells and macrophages. It is therefore conceivable that anti-moesin Ab in AA patients may bind these immune cells and modulate hematopoietic function of AA patients. To test these hypotheses, we first studied the expression of moesin on various types of blood cells using monoclonal Ab specific to moesin (clone 38/87). Flow cytometry detected the expression of the protein recognized by anti-moesin Ab on T cells and monocytes from healthy individuals, acute monocytic leukemia cells lines including U937 and THP-1, and an acute T-lymphoblastic leukemia cell line, Molt-4, but failed to detect the molecule on CD34+ cells from healthy individuals and myeloid leukemia cell lines as well as B-lymphoblastic leukemia cell lines. Treatment of THP-1 cells with phorbol 12-myristate 13-acetate (PMA)/lipopolysaccharide (LPS) augmented the expression level of moesin. To confirm the expression of the moesin-like protein on the surface of monocytic leukemia cell lines, Molt-4 and THP-1 were treated with sulfo-NHS-SS-biotin, and the cell surface proteins were isolated with avidin-fixed column, and were subjected to Western blotting and peptide mass fingerprinting. Western blotting with anti-moesin monoclonal Abs showed two clear bands of proteins (75 kD and 80 kD); an amino acid sequence compatible with moesin was confirmed in the protein eluted from the 80 kD band. Next, we purified anti-moesin Abs from AA patients’ sera using affinity chromatography with recombinant moesin protein. Western blotting showed binding of the serum-derived Abs to a fraction of surface proteins of Molt-4, U937 and THP-1. When THP-1 cells were incubated in the presence of PMA and LPS with 5 αg/ml of control IgG or anti-moesin Abs derived from an AA patient’s serum, TNF-α production from THP-1 cells stimulated by anti-moesin Abs was 1.9–2.3 times as much as that from the control culture depending on the concentration of LPS. Incubation of THP-1 cells in the presence of monoclonal anti-moesin Abs showed the similar augmentation of TNF-α production. These results indicate that anti-moesin Abs may be involved in the suppression of hematopoiesis of AA patients by stimulating TNF-α production from monocytes.


2017 ◽  
Vol 55 (8) ◽  
pp. 1215-1223 ◽  
Author(s):  
Renáta Hudák ◽  
Ildikó Beke Debreceni ◽  
Ivett Deák ◽  
Gabriella Gál Szabó ◽  
Zsuzsanna Hevessy ◽  
...  

Abstract Background: In acute myeloid leukemias, there is an increased chance to develop thrombotic disorders. We hypothesized that in addition to leukemic promyelocytes, monocytic leukemia cells may also have a higher procoagulant activity. Methods: Fibrin formation was assessed by a one-stage clotting assay using a magnetic coagulometer. The thrombin generation test (TGT) of magnetically isolated normal human monocytes, intact leukemic cells and their isolated microparticles was performed by a fluorimetric assay. Phosphatidylserine (PS) expression of leukemic cells and microparticle number determinations were carried out by flow cytometry. Results: All cell lines displayed a significant procoagulant potential compared to isolated normal human monocytes. In the TGT test, the mean of lagtime and the time to peak parameters were significantly shorter in leukemic cells (3.9–4.7 and 9.9–10.3 min) compared to monocytes (14.9 and 26.5 min). The mean of peak thrombin in various monocytic leukemia cell lines was 112.1–132.9 nM vs. 75.1 nM in monocytes; however, no significant difference was observed in the ETP parameter. Factor VII-deficient plasma abolished all procoagulant activity, whereas factor XII-deficient plasma did not affect the speed of fibrin formation and thrombin generation but modulated the amount of thrombin. Factor XI-deficient plasma affected the time to peak values in one leukemic cell line and also attenuated peak thrombin. Leukemia cell-derived microparticles from all three cell lines exerted a procoagulant effect by significantly shortening the lagtime in TGT; there was a nonsignificant difference in case of ETP parameter. Conclusions: All investigated monocytic leukemia cell lines exhibited significant thrombin generation. This phenomenon was achieved by the procoagulants on the surface of leukemic cells as well as by their microparticles.


2021 ◽  
Vol 22 (8) ◽  
pp. 4265
Author(s):  
Jang Mi Han ◽  
Hong Lae Kim ◽  
Hye Jin Jung

Leukemia is a type of blood cancer caused by the rapid proliferation of abnormal white blood cells. Currently, several treatment options, including chemotherapy, radiation therapy, and bone marrow transplantation, are used to treat leukemia, but the morbidity and mortality rates of patients with leukemia are still high. Therefore, there is still a need to develop more selective and less toxic drugs for the effective treatment of leukemia. Ampelopsin, also known as dihydromyricetin, is a plant-derived flavonoid that possesses multiple pharmacological functions, including antibacterial, anti-inflammatory, antioxidative, antiangiogenic, and anticancer activities. However, the anticancer effect and mechanism of action of ampelopsin in leukemia remain unclear. In this study, we evaluated the antileukemic effect of ampelopsin against acute promyelocytic HL60 and chronic myelogenous K562 leukemia cells. Ampelopsin significantly inhibited the proliferation of both leukemia cell lines at concentrations that did not affect normal cell viability. Ampelopsin induced cell cycle arrest at the sub-G1 phase in HL60 cells but the S phase in K562 cells. In addition, ampelopsin regulated the expression of cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors differently in each leukemia cell. Ampelopsin also induced apoptosis in both leukemia cell lines through nuclear condensation, loss of mitochondrial membrane potential, increase in reactive oxygen species (ROS) generation, activation of caspase-9, caspase-3, and poly ADP-ribose polymerase (PARP), and regulation of Bcl-2 family members. Furthermore, the antileukemic effect of ampelopsin was associated with the downregulation of AKT and NF-κB signaling pathways. Moreover, ampelopsin suppressed the expression levels of leukemia stemness markers, such as Oct4, Sox2, CD44, and CD133. Taken together, our findings suggest that ampelopsin may be an attractive chemotherapeutic agent against leukemia.


Sign in / Sign up

Export Citation Format

Share Document