Effective Hydraulic and Mechanical Properties of Heterogeneous Media with Interfaces

Author(s):  
L. Dormieux ◽  
L. Jeannin ◽  
J. Sanahuja
1981 ◽  
Vol 26 (3) ◽  
pp. 163-170
Author(s):  
A.I. Levykin ◽  
A.I. Farberov ◽  
R.M. Nasimov ◽  
A.O. Gliko

2013 ◽  
Vol 117 (1196) ◽  
pp. 1019-1036 ◽  
Author(s):  
I. A. Guz ◽  
J. J. Rushchitsky ◽  
A. N. Guz

AbstractThe paper revisits some of the well-known models in the mechanics of structurally heterogeneous media for the purpose of analysing their suitability to describe properties of nanocomposites and their mechanical behaviour. It also presents a new multi-component model for predicting the mechanical properties of micro- and nanocomposites reinforced either by whiskerising the microfibres or by bristlising the nanowires. The mathematical formulation of the model is based on using the Muskhelishvili complex potentials for each domain occupied by a separate component. As an example, the effective elastic constants are computed for fibrous composites with four different densities of whiskerisation. It is shown that the increase in the number of bristles per unit surface of the fibres gives a very strong rise to the value of Young’s modulus. However, the shear modulus, being the driving parameter for the strength estimation of the entire composition, is less sensitive to this factor.


1994 ◽  
Vol 367 ◽  
Author(s):  
S.A. Timan ◽  
V.G. Oshmian

AbstractThe mechanical properties of the 2D elastic rigid-nonrigid disordered system in dependence on the concentrations of the rigid phase are studied. The system is constructed on the basis of the square lattice and finite element method (FEM) approximation. The elasticity threshold of the FE system and the critical exponents are detemined by the phenomenological renormalization (PR) of the Monte Carlo data.


2005 ◽  
Vol 16 (01) ◽  
pp. 1-16 ◽  
Author(s):  
S. M. VAEZ ALLAEI ◽  
MUHAMMAD SAHIMI

The problem of computing the effective transport and mechanical properties of disordered materials, modeled by random or correlated percolation networks, is studied as an optimization problem. We show that calculating an optimal distribution of the potentials (voltages, displacements, etc.) throughout a disordered material that minimizes its total energy reduces the computation times for calculating the effective properties by a factor that depending on the morphology of the system, ranges from 3 to 73. Hence, this offers significant speed-up over the most efficient numerical methods currently available.


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


Author(s):  
D. R. Clarke ◽  
G. Thomas

Grain boundaries have long held a special significance to ceramicists. In part, this has been because it has been impossible until now to actually observe the boundaries themselves. Just as important, however, is the fact that the grain boundaries and their environs have a determing influence on both the mechanisms by which powder compaction occurs during fabrication, and on the overall mechanical properties of the material. One area where the grain boundary plays a particularly important role is in the high temperature strength of hot-pressed ceramics. This is a subject of current interest as extensive efforts are being made to develop ceramics, such as silicon nitride alloys, for high temperature structural applications. In this presentation we describe how the techniques of lattice fringe imaging have made it possible to study the grain boundaries in a number of refractory ceramics, and illustrate some of the findings.


Author(s):  
Li Li-Sheng ◽  
L.F. Allard ◽  
W.C. Bigelow

The aromatic polyamides form a class of fibers having mechanical properties which are much better than those of aliphatic polyamides. Currently, the accepted morphology of these fibers as proposed by M.G. Dobb, et al. is a radial arrangement of pleated sheets, with the plane of the pleats parallel to the axis of the fiber. We have recently obtained evidence which supports a different morphology of this type of fiber, using ultramicrotomy and ion-thinning techniques to prepare specimens for transmission and scanning electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document