Antimicrobial Activities of Essential Oils

Author(s):  
Danuta Kalemba ◽  
Martyna Matla ◽  
Anna Smętek
2019 ◽  
Author(s):  
A Filip ◽  
I Boz ◽  
S Dunca ◽  
G-A Ștefan ◽  
M-M Zamfirache

2010 ◽  
Vol 5 (2) ◽  
pp. 1934578X1000500 ◽  
Author(s):  
Maria Graça Miguel ◽  
Cláudia Cruz ◽  
Leonor Faleiro ◽  
Mariana T. F. Simões ◽  
Ana Cristina Figueiredo ◽  
...  

The essential oils from Foeniculum vulgare commercial aerial parts and fruits were isolated by hydrodistillation, with different distillation times (30 min, 1 h, 2 h and 3 h), and analyzed by GC and GC-MS. The antioxidant ability was estimated using four distinct methods. Antibacterial activity was determined by the agar diffusion method. Remarkable differences, and worrying from the quality and safety point of view, were detected in the essential oils. trans-Anethole (31-36%), α-pinene (14-20%) and limonene (11-13%) were the main components of the essentials oil isolated from F. vulgare dried aerial parts, whereas methyl chavicol (= estragole) (79-88%) was dominant in the fruit oils. With the DPPH method the plant oils showed better antioxidant activity than the fruits oils. With the TBARS method and at higher concentrations, fennel essential oils showed a pro-oxidant activity. None of the oils showed a hydroxyl radical scavenging capacity >50%, but they showed an ability to inhibit 5-lipoxygenase. The essential oils showed a very low antimicrobial activity. In general, the essential oils isolated during 2 h were as effective, from the biological activity point of view, as those isolated during 3 h.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1406
Author(s):  
Rita Cava-Roda ◽  
Amaury Taboada-Rodríguez ◽  
Antonio López-Gómez ◽  
Ginés Benito Martínez-Hernández ◽  
Fulgencio Marín-Iniesta

Plant bioactive compounds have antimicrobial and antioxidant activities that allow them to be used as a substitute for synthetic chemical additives in both food and food packaging. To improve its sensory and bactericidal effects, its use in the form of effective combinations has emerged as an interesting possibility in the food industry. In this study, the antimicrobial activities of essential oils (EOs) of cinnamon bark, cinnamon leaves, and clove and the pure compounds vanillin, eugenol, and cinnamaldehyde were investigated individually and in combination against Listeria monocytogenes and Escherichia coli O157:H7. The possible interactions of combinations of pure compounds and EOs were performed by the two-dimensional checkerboard assay and isobologram methods. Vanillin exhibited the lowest antimicrobial activity (MIC of 3002 ppm against L. monocytogenes and 2795 ppm against E. coli O157:H7), while clove and cinnamon bark EOs exhibited the highest antimicrobial activity (402–404 against L. monocytogenes and 778–721 against E. coli O157:H7). For L. monocytogenes, pure compound eugenol, the main component of cinnamon leaves and clove, showed lower antimicrobial activity than EOs, which was attributed to the influence of the minor components of the EOs. The same was observed with cinnamaldehyde, the main component of cinnamon bark EO. The combinations of vanillin/clove EO and vanillin/cinnamon bark EO showed the most synergistic antimicrobial effect. The combination of the EOs of cinnamon bark/clove and cinnamon bark/cinnamon leaves showed additive effect against L. monocytogenes but indifferent effect against E. coli O157:H7. For L. monocytogenes, the best inhibitory effects were achieved by cinnamon bark EO (85 ppm)/vanillin (910 ppm) and clove EO (121 ppm)/vanillin (691 ppm) combinations. For E. coli, the inhibitory effects of clove EO (104 ppm)/vanillin (1006 ppm) and cinnamon leaves EO (118 ppm)/vanillin (979 ppm) combinations were noteworthy. Some of the tested combinations increased the antimicrobial effect and would allow the effective doses to be reduced, thereby offering possible new applications for food and active food packaging.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 114
Author(s):  
Armina Morkeliūnė ◽  
Neringa Rasiukevičiūtė ◽  
Lina Šernaitė ◽  
Alma Valiuškaitė

The Colletotrichum spp. is a significant strawberry pathogen causing yield losses of up to 50%. The most common method to control plant diseases is through the use of chemical fungicides. The findings of plants antimicrobial activities, low toxicity, and biodegradability of essential oils (EO), make them suitable for biological protection against fungal pathogens. The aim is to evaluate the inhibition of Colletotrichum acutatum by thyme, sage, and peppermint EO in vitro on detached strawberry leaves and determine EO chemical composition. Our results revealed that the dominant compound of thyme was thymol 41.35%, peppermint: menthone 44.56%, sage: α,β-thujone 34.45%, and camphor: 20.46%. Thyme EO inhibited C. acutatum completely above 200 μL L−1 concentration in vitro. Peppermint and sage EO reduced mycelial growth of C. acutatum. In addition, in vitro, results are promising for biological control. The detached strawberry leaves experiments showed that disease reduction 4 days after inoculation was 15.8% at 1000 μL L−1 of peppermint EO and 5.3% at 800 μL L−1 of thyme compared with control. Our findings could potentially help to manage C. acutatum; however, the detached strawberry leaves assay showed that EO efficacy was relatively low on tested concentrations and should be increased.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 786
Author(s):  
Hamza Ouakouak ◽  
Adel Benarfa ◽  
Mohammed Messaoudi ◽  
Samir Begaa ◽  
Barbara Sawicka ◽  
...  

This study describes the chemical composition, antitumor, antioxidant, and antimicrobial activities of the plant Thymus algeriensis Boiss. Essential oils (EOs) were collected in different periods (before, during, and after flowering stage) from the El-Guetfa region, M’sila, Algeria. The EOs extraction was achieved using three distinguishing techniques: hydro (Clevenger trap), steam, and microwave distillations, targeting different aerial parts of the plant (stems, flowers, and leaves). The EOs chemical components were estimated using GC-FID and GC-MS apparatuses. The resulting yield of the extracted oil was moderate and ranged between 0.84 and 1.53% (wt/vol). In total, eighty-five components were identified, in which the oxygenated monoterpenes family formed the main portion, starting from 40.56 up to 70.66%. The obtained essential oil was dominated by five major components that varied from low to quite moderate percentages: camphor (17.45–32.56%), borneol (11.16–22.2%), camphene (7.53–12.86%), 1.8-cineole (5.16–11.21%), and bornyl acetate (3.86–7.92%). The biological results of this oil pointed out that the EOs extracted from the leaves part exposed a weak radical scavenging activity afterward using two well-known antioxidant assays DPPH (IC50 = 8.37 mg/mL) and ABTS (10.84 mg/mL). Meanwhile, this oil presented strong inhibition activity against colon cancer cell line HCT116 (LC50 = 39.8 µg/mL) and a moderate inhibitory against hepatocellular cancer cells HePG2 (LC50 > 100 µg/mL). In addition, this oil antimicrobial activity was quite important against Micrococcus luteus (M. luteus), Staphylococcus aureus CIP 7625, Escherichia coli ATCC 10536, Saccharomyces cerevisiae ATCC 4226, Candida albicans IPA200, Candida tropicalis (Ct), and Candida glabrata (Cg) after using Amoxicillin and Itraconazole as references.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3170
Author(s):  
Wafaa M. Elkady ◽  
Mariam H. Gonaid ◽  
Miriam F. Yousif ◽  
Mahmoud El-Sayed ◽  
Hind A. N. Omar

Active components from natural sources are the current focus in most pharmacological research to provide new therapeutic agents for clinical use. Essential oils from the Pinus species have been traditionally used in medicine. This study aimed to investigate the chemical profile of two Pinus species, Pinus halepensis L. and Pinus pinea Mill, from different altitudes in Libya and study the effect of environmental conditions on the biological activities of essential oils. A clevenger apparatus was used to prepare the essential oils by hydrodistillation. Analyses were done using GC/MS. Anthelmintic and antimicrobial activities were tested against the earthworm Allolobophora caliginosa, gram-positive bacteria, gram-negative bacteria, and fungi. Different chemical profiles were observed among all tested essential oils, and terpenes were the most dominant class. All studied essential oils from the Pinus species exhibited a remarkable anthelmintic activity compared to the standard piperazine citrate drug. Pinus halepensis from both altitudes showed broad-spectrum antimicrobial activity against all tested microorganisms, while Pinus pinea was effective against only Escherichia coli. From these findings, one can conclude that there are variations between studied species. The essential oil compositions are affected by environmental factors, which consequently affect the anthelmintic and antimicrobial activity.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1214
Author(s):  
Imane Zalegh ◽  
Mohamed Akssira ◽  
Mohammed Bourhia ◽  
Fouad Mellouki ◽  
Naima Rhallabi ◽  
...  

Resistance to drugs is reaching alarming levels and is placing human health at risk. With the lack of new antimicrobials drugs, infectious diseases are becoming harder to treat. Hence, there is an increasing awareness of active phytochemicals with therapeutic functions. The tremendous research interest on the Cistus L. genus includes numerous plants used in traditional medicine by people living around the Mediterranean Sea, also resulted in some interesting discoveries and written literature. This review aimed at gathering scientific literature about Cistus species, describing phytochemical profiles and the various pharmacological activities. We also extensively reviewed the antimicrobial activities, including antiviral, antiparasitic, antifungal, and antibacterial potentials of Essential Oils (EO), raw extracts as well as isolated compounds. Mechanisms of action along with methods used are also investigated in this review. Considering the findings of the Cistus species extracts, this genus offers an adequate reserve of active phytochemicals since many have been used to create drugs. Therefore, this review work can serve society by providing a global view on Cistus L. sp. regarding pharmacological potentials and their chemical profiles.


Proceedings ◽  
2020 ◽  
Vol 66 (1) ◽  
pp. 9
Author(s):  
Yoram Gerchman

Plants have been explored and used as sources for antimicrobial extract and compounds for many years, but galls—specialized structures forms on such by diversity of organisms—have been explored much less. Aphid galls host many insects in closed, humid and sugar rich environments for long periods. We have tested the antimicrobial properties of Slavum wertheimae aphid galls on Pistacia atlantica. Secondary metabolites were extracted from leaves and galls with organic solvents, and essential oils with Clevenger, and tested by disk diffusion assay and volatile effect on bacteria and fungi, respectively. The results demonstrated that gall extracts/essential oils had much stronger activity against the diversity of bacteria and fungi. The large diversity of galls suggest they could be explored as source for novel compounds.


Sign in / Sign up

Export Citation Format

Share Document