Compressive Residual Stress on Fatigue Fractured Surface

Author(s):  
Shotaro Kodama ◽  
Hiroshi Misawa ◽  
Katsuhiko Ohsumi
2021 ◽  
pp. 002199832110047
Author(s):  
Mahmoud Mohamed ◽  
Siddhartha Brahma ◽  
Haibin Ning ◽  
Selvum Pillay

Fiber prestressing during matrix curing can significantly improve the mechanical properties of fiber-reinforced polymer composites. One primary reason behind this improvement is the generated compressive residual stress within the cured matrix, which impedes cracks initiation and propagation. However, the prestressing force might diminish progressively with time due to the creep of the compressed matrix and the relaxation of the tensioned fiber. As a result, the initial compressive residual stress and the acquired improvement in mechanical properties are prone to decline over time. Therefore, it is necessary to evaluate the mechanical properties of the prestressed composites as time proceeds. This study monitors the change in the tensile and flexural properties of unidirectional prestressed glass fiber reinforced epoxy composites over a period of 12 months after manufacturing. The composites were prepared using three different fiber volume fractions 25%, 30%, and 40%. The results of mechanical testing showed that the prestressed composites acquired an initial increase up to 29% in the tensile properties and up to 32% in the flexural properties compared to the non-prestressed counterparts. Throughout the 12 months of study, the initial increase in both tensile and flexural strength showed a progressive reduction. The loss ratio of the initial increase was observed to be inversely proportional to the fiber volume fraction. For the prestressed composites fabricated with 25%, 30%, and 40% fiber volume fraction, the initial increase in tensile and flexural strength dropped by 29%, 25%, and 17%, respectively and by 34%, 26%, and 21%, respectively at the end of the study. Approximately 50% of the total loss took place over the first month after the manufacture, while after the sixth month, the reduction in mechanical properties became insignificant. Tensile modulus started to show a very slight reduction after the fourth/sixth month, while the flexural modulus reduction was observed from the beginning. Although the prestressed composites displayed time-dependent losses, their long-term mechanical properties still outperformed the non-prestressed counterparts.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2767
Author(s):  
Ki-Won Jeong ◽  
Jung-Suk Han ◽  
Gi-Uk Yang ◽  
Dae-Joon Kim

Yttria-stabilized zirconia (3Y-TZP) containing 0.25% Al2O3, which is resistant to low temperature degradation (LTD), was aged for 10 h at 130–220 °C in air. The aged specimens were subsequently indented at loads ranging from 9.8 to 490 N using a Vickers indenter. The influence of preaging temperature on the biaxial strength of the specimens was investigated to elucidate the relationship between the extent of LTD and the strength of zirconia restorations that underwent LTD. The indented strength of the specimens increased as the preaging temperature was increased higher than 160 °C, which was accompanied by extensive t-ZrO2 (t) to m-ZrO2 (m) and c-ZrO2 (c) to r-ZrO2 (r) phase transformations. The influence of preaging temperature on the indented strength was rationalized by the residual stresses raised by the t→m transformation and the reversal of tensile residual stress on the aged specimen surface due to the indentation. The results suggested that the longevity of restorations would not be deteriorated if the aged restorations retain compressive residual stress on the surface, which corresponds to the extent of t→m phase transformation less than 52% in ambient environment.


2014 ◽  
Vol 783-786 ◽  
pp. 692-697 ◽  
Author(s):  
Andrew Clark ◽  
Randy J. Bowers ◽  
Derek O. Northwood

The effects of heat treatment on distortion, residual stress, and retained austenite were compared for case-carburized 4320 steel, in both the austempered and quench-and-tempered condition. Navy C-ring samples were used to quantify both size and shape distortions, as well as residual stress. The austempering heat treatment produced less distortion and a higher surface residual stress. Both hoop and axial stresses were measured; the difference between them was less than seven percent in all cases. Depth profiles were obtained for residual stress and retained austenite from representative C-ring samples for the austempered and quench-and-tempered heat treatment conditions. Austempering maintained a compressive residual stress to greater depths than quench-and-tempering. Quench-and-tempering also resulted in lower retained austenite amounts immediately beneath the surface. However, for both heat treatments, the retained austenite content was approximately one percent at depths greater than 0.5 mm.


2011 ◽  
Vol 295-297 ◽  
pp. 2227-2230
Author(s):  
Cong Ling Zhou

In this study, fatigue tests have been performed using two kinds of specimens made of 25 steel. One is pre-strained specimen with pre-strain ratio changing from 2% to 8% by tension, the other is roller worked with deformation of 0.5 mm and 1.0 mm in diameter direction. In the case of pre-strained specimen, the fatigue limit increases according to increase of tensile pre-strain, the fatigue limit of 8% pre-strained specimen is 25% higher than that of non-pre-strained one; in the case of roller worked specimen, the fatigue limit of R05 and R10 is 126% and 143% to that of non-roller worked specimen, respectively. These remarkable improvements of fatigue limit would be caused by the existence of compressive residual stress, work-hardening and the elongated microscopic structures.


2007 ◽  
Vol 353-358 ◽  
pp. 1617-1620 ◽  
Author(s):  
Xu Dong Ren ◽  
Yong Kang Zhang ◽  
Jian Zhong Zhou ◽  
Yong Yu Gu ◽  
Y.Y. Xu ◽  
...  

Laser shock processing (LSP) employs high-energy laser pulses from a solid-state laser system to create intense shock waves into a material, which can induce compressive residual stresses in the target surface and improve its mechanical property efficiency. Residual stress of Ti6Al4V alloy both before and after LSP with multishocks was analysised. The depth of compressive residual stress was found to have a dependence on the number of shocking layers and a slight dependence on the level of irradiance. Surface stress improvements of more than 50% increases are possible after laser shock processing with either large spot or small spot patterns. The large spot gave a surface stress of 432MPa and a depth of over 1mm. The low intensity small spot gave a surface stress of 285MPa with a depth comparable to the large spot. Laser shock processing induces a compressive residual stress field, which increases fatigue crack initiation life and reduces fatigue crack growth rate.


2021 ◽  
Vol 880 ◽  
pp. 23-28
Author(s):  
Warinthorn Thanakulwattana ◽  
Wasawat Nakkiew

Because of the general problem of the welding workpiece such as fatigue fracture caused by tensile residual stress lead to initial and propagation crack in the fusion zone. Thus, the mechanical surface treatment of deep rolling on Gas Tungsten Arc Welded (GTAW) surfaces of AISI 316L was studied. Deep rolling (DR) is a cold working process to induce compressive residual stress in the surface layer of the workpiece resulting in hardening deformation which increased surface hardness, and smooth surface that inhibit crack growth and improve fracture strength of materials. The present study focuses on compressive residual stress at the surface of stainless steel AISI 316L butt welded joint of GTAW. The three parameters of DR process were used; pressure 150 bar, rolling speed 400 mm/min, and step over 1.0 mm. The residual stresses analysis by X-ray diffraction with sin2Ψ method at 0, 5, 10, and 20 mm from the center of the welded bead. The results showed that the DR process on the welded of GTAW induce the minimum compressive residual stress-408.6 MPa and maximum-498.1 MPa in longitudinal direction. The results of transverse residual stress in minimum and maximum are 43.7 MPa and-34.8 MPa respectively. The FWHM of DR both longitudinal and transverse direction were increased in the same trend. Furthermore, the microhardness after DR treatment on workpiece surface layer higher than GTAW average 0.4 times.


Author(s):  
Eckehard Mueller

Today components specially for passenger cars are weight optimized. Often it is done by mechanical surface treatments. Therefore, the amount of compressive residual stress induced by the treatment must be known. The measurement is very often done by x-ray diffraction. But how precise can you determine (and not directly measured) the amount? A big question is the calibration of the equipment. A specimen must be designed and calibrated by round robin test, because no measurement standard is available.


Sign in / Sign up

Export Citation Format

Share Document