Molecular Aspects of the Cell Cycle in Catharanthus Roseus Synchronous Cell Division Cultures

Author(s):  
Hiroaki Kodama ◽  
Masaki Ito ◽  
Atsushi Komamine
1999 ◽  
Vol 343 (2) ◽  
pp. 479-485 ◽  
Author(s):  
Shulin WANG ◽  
Shigeru NAKASHIMA ◽  
Osamu NUMATA ◽  
Kenta FUJIU ◽  
Yoshinori NOZAWA

To identify transcriptionally regulated mediators associated with the cell cycle, we adopted the differential mRNA display technique for cell cultures of Tetrahymenapyriformis synchronized by cyclic heat treatment. One cDNA fragment that was expressed differently during synchronous cell division had a greatly decreased expression at 30 min after the end of heat treatment (EHT). Using this fragment as a probe, we isolated the full-length cDNA for T. pyriformis acetyl-CoA synthetase (TpAcs) which encodes a 651 amino acid polypeptide with a predicted molecular mass of 72.8 kDa. The deduced amino acid sequence of T. pyriformis ACS shows 42% sequence identity compared with that ofLysobacter sp. acetyl-CoA synthetase (ACS), an enzyme which catalyses the formation of acetyl-CoA from acetate via an acetyl-adenylate intermediate. The deduced sequence is also 41% and 40% identical compared with those of Pseudomonas putida and Coprinus cinereus ACS, respectively. The deduced sequence of T. pyriformis ACS also shares similar characteristics of the conserved motifs I and II in the ACS family. To further investigate the actions of the gene encoding this enzyme, mRNA expression was determined during the course of synchronized cell division in T. pyriformis. Northern blot results show that the mRNA level was dramatically decreased at 30 min after EHT prior to entering synchronous cell division (which occurs 75 min after EHT), suggesting that mRNA expression of the TpAcs was associated with the cell cycle and that the down-regulated expression of TpAcs at 30 min after EHT would be required for the initiation of the oncoming synchronous cell division in T. pyriformis.


1973 ◽  
Vol 57 (3) ◽  
pp. 668-674 ◽  
Author(s):  
Pamela Leban Johnston ◽  
Edgar F. Carell

When vitamin B12 is added to B12-deficient cultures of Euglena gracilis, the cells undergo two relatively synchronous cell divisions within a shorter than usual period of time, apparently as a result of a transitory shortening of the cell cycle. The first cell division pulse, occurring 4.5 h after addition of B12, is preceded by the completion of DNA duplication, but appears to involve no net synthesis of RNA or protein. Before the second round of cell division at about 11 h, a significant amount of DNA synthesis is observed. This time it is accompanied by a minor increase in the RNA and protein content of the culture. The cellular contents of RNA and protein were observed to decrease steadily after the resumption of cell division in B12-depleted cultures receiving the vitamin. Ultimately all three macromolecules returned to their nondeficient, plateau stage levels; by this time, cell division had ceased.


1998 ◽  
Vol 334 (1) ◽  
pp. 197-203 ◽  
Author(s):  
Shulin WANG ◽  
Shigeru NAKASHIMA ◽  
Hideki SAKAI ◽  
Osamu NUMATA ◽  
Kenta FUJIU ◽  
...  

With the intention of investigating the signal-transduction pathway that mediates the cold-stress response in Tetrahymena, we isolated a gene that encodes a novel protein kinase of 561 amino acids, termed Tetrahymena pyriformis NIMA (never-in-mitosis in Aspergillus nidulans)-related protein kinase (TpNrk), by differential display from Tetrahymena cells exposed to temperature shift-down. TpNrk possesses an N-terminal protein kinase domain that is highly homologous with other NIMA-related protein kinases (Neks) involved in the control of the cell cycle. The TpNrk protein is 42% identical in its catalytic domain with human Nek2, 41% identical with mouse Nek1 and 37% with A. nidulans NIMA. In addition, TpNrk and these NIMA-related kinases have long, basic C-terminal extensions and are therefore similar in overall structure. In order to further explore the function of the TpNrk gene and the association of the cold stress with the cell cycle of Tetrahymena,changes of TpNrk mRNA were determined during the course of the synchronous cell division induced by the intermittent heat treatment. The level of TpNrk transcription increased immediately after the end of the heat treatment, with a peak at 30 min, and declined thereafter reaching the minimum level when nearly 80% of the cells synchronously entered cell division (75 min after the end of heat treatment). The accumulation of TpNrk mRNA starting from 0 min to 30 min after the end of the heat treatment was assumed to be a prerequisite for the start of synchronous cell division. These results suggest that TpNrk may have a role in the cell cycle of Tetrahymena, and that mRNA expression, at least, is under tight cell-cycle control.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 868C-868
Author(s):  
Anish Malladi* ◽  
Peter Hirst

Fruit size is a commercially valuable trait. Although several factors are known to affect fruit size in apple, insights into the molecular aspects of its regulation are lacking. Our research aims to understand fruit size regulation using a combination of approaches. Analysis of a large fruited mutant of `Gala', `Grand Gala' (GG), showed that it was 40% heavier than `Gala' at harvest. Increase in size of GG fruit was caused by an increase in the cell size apparent at full bloom. Flow cytometry revealed the presence of multiple levels of ploidy (up to 16C) in GG during early fruit development. Increase in ploidy of GG is hypothesized to be due to endoreduplication, a process normally absent in apple. Endoreduplication is a modification of the cell cycle where DNA replication is not followed by cell division, resulting in increased DNA content accompanied by increased cell size. To understand if the cell cycle is altered in GG, four key cell cycle regulators, MdCDKA1, MdCDKB1, MdCYCB2 and MdCYCD3 have been partially cloned from apple using RT-PCR and RACE. As cell number at the end of the cell division phase is correlated with fruit size at harvest, expression analysis of these genes can provide valuable insights into their role in the regulation of cell number and fruit size. Analysis of cell cycle gene expression in GG may provide key insights into the altered molecular regulation that leads to endoreduplication in the mutant. Parallel approaches being employed to study whether environmental and cultural factors regulate fruit size through an influence on the cell cycle will also be discussed.


2019 ◽  
Vol 202 (2) ◽  
Author(s):  
Peter E. Burby ◽  
Lyle A. Simmons

ABSTRACT All organisms regulate cell cycle progression by coordinating cell division with DNA replication status. In eukaryotes, DNA damage or problems with replication fork progression induce the DNA damage response (DDR), causing cyclin-dependent kinases to remain active, preventing further cell cycle progression until replication and repair are complete. In bacteria, cell division is coordinated with chromosome segregation, preventing cell division ring formation over the nucleoid in a process termed nucleoid occlusion. In addition to nucleoid occlusion, bacteria induce the SOS response after replication forks encounter DNA damage or impediments that slow or block their progression. During SOS induction, Escherichia coli expresses a cytoplasmic protein, SulA, that inhibits cell division by directly binding FtsZ. After the SOS response is turned off, SulA is degraded by Lon protease, allowing for cell division to resume. Recently, it has become clear that SulA is restricted to bacteria closely related to E. coli and that most bacteria enforce the DNA damage checkpoint by expressing a small integral membrane protein. Resumption of cell division is then mediated by membrane-bound proteases that cleave the cell division inhibitor. Further, many bacterial cells have mechanisms to inhibit cell division that are regulated independently from the canonical LexA-mediated SOS response. In this review, we discuss several pathways used by bacteria to prevent cell division from occurring when genome instability is detected or before the chromosome has been fully replicated and segregated.


RSC Advances ◽  
2021 ◽  
Vol 11 (16) ◽  
pp. 9112-9120
Author(s):  
Jenna L. Gordon ◽  
Kristin J. Hinsen ◽  
Melissa M. Reynolds ◽  
Tyler A. Smith ◽  
Haley O. Tucker ◽  
...  

S-Nitrosoglutathione (GSNO) reduces cell viability, inhibits cell division, and induces cell cycle arrest and apoptosis in neuroblastoma cells.


Sign in / Sign up

Export Citation Format

Share Document