scholarly journals Molecular Analysis of Fruit Size Regulation in Apple

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 868C-868
Author(s):  
Anish Malladi* ◽  
Peter Hirst

Fruit size is a commercially valuable trait. Although several factors are known to affect fruit size in apple, insights into the molecular aspects of its regulation are lacking. Our research aims to understand fruit size regulation using a combination of approaches. Analysis of a large fruited mutant of `Gala', `Grand Gala' (GG), showed that it was 40% heavier than `Gala' at harvest. Increase in size of GG fruit was caused by an increase in the cell size apparent at full bloom. Flow cytometry revealed the presence of multiple levels of ploidy (up to 16C) in GG during early fruit development. Increase in ploidy of GG is hypothesized to be due to endoreduplication, a process normally absent in apple. Endoreduplication is a modification of the cell cycle where DNA replication is not followed by cell division, resulting in increased DNA content accompanied by increased cell size. To understand if the cell cycle is altered in GG, four key cell cycle regulators, MdCDKA1, MdCDKB1, MdCYCB2 and MdCYCD3 have been partially cloned from apple using RT-PCR and RACE. As cell number at the end of the cell division phase is correlated with fruit size at harvest, expression analysis of these genes can provide valuable insights into their role in the regulation of cell number and fruit size. Analysis of cell cycle gene expression in GG may provide key insights into the altered molecular regulation that leads to endoreduplication in the mutant. Parallel approaches being employed to study whether environmental and cultural factors regulate fruit size through an influence on the cell cycle will also be discussed.

2004 ◽  
Vol 129 (1) ◽  
pp. 37-41 ◽  
Author(s):  
Yahya K. Al-Hinai ◽  
Teryl R. Roper

The effects of rootstock on growth of fruit cell number and size of `Gala' apple trees (Malus domestica Borkh) were investigated over three consecutive seasons (2000-02) growing on Malling 26 (M.26), Ottawa-3, Pajam-1, and Vineland (V)-605 rootstocks at the Peninsular Agricultural Research Station near Sturgeon Bay, WI. Fruit growth as a function of cell division and expansion was monitored from full bloom until harvest using scanning electron microscopy (SEM). Cell count and cell size measurements showed that rootstock had no affect on fruit growth and final size even when crop load effects were removed. Cell division ceased about 5 to 6 weeks after full bloom (WAFB) followed by cell expansion. Fruit size was positively correlated (r2 = 0.85) with cell size, suggesting that differences in fruit size were primarily a result of changes in cell size rather than cell number or intercellular space (IS).


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1097A-1097
Author(s):  
Anish Malladi ◽  
Peter Goldsbrough ◽  
Peter Hirst

Fruit development in apple cultivars varying in their ultimate fruit size was analyzed using cytology, flow cytometry (FCM), and semi-quantitative RT-PCR. Fruit size variation across cultivars was largely explained by variation in cell number. The cell division phase lasted for less than 30 days in all varieties, less than previously believed. A distinct overlap between the cell division and cell expansion phases was present. Analysis of the relative cell production rate (rCPR) showed a major peak about 10 days after full bloom (DAFB) after which it declined. Comparison of the rCPR across varieties suggested distinct patterns of cell production with `Gala' having a low but sustained rCPR, `Pixy Crunch' a short but high rCPR, and `Golden Delicious' having a high and sustained rCPR. FCM analysis also showed similar patterns with a peak in the proportion of dividing cells about 10 DAFB followed by a decline. To further understand regulation of cell number, four cell cycle related genes were cloned from `Gala'. Cyclin Dependent Kinase B (CDK B) and Cyclin B were found to be highly cell division phase specific in their expression. Analysis of gene expression by semi-quantitative RT-PCR indicated peak expression of these two genes at 5-10 DAFB, consistent with the peaks in rCPR and proportion of dividing cells. Comparison of gene expression across the varieties showed higher peak expression of the above genes in the larger-fruited `Golden Delicious' than in the smaller-fruited `Gala.' This study provides novel insight into the regulation of fruit development in apple and also suggests a role for the cell cycle genes in fruit size regulation.


2018 ◽  
Author(s):  
Evgeny Zatulovskiy ◽  
Daniel F. Berenson ◽  
Benjamin R. Topacio ◽  
Jan M. Skotheim

Cell size is fundamental to function in different cell types across the human body because it sets the scale of organelle structures, biosynthesis, and surface transport1,2. Tiny erythrocytes squeeze through capillaries to transport oxygen, while the million-fold larger oocyte divides without growth to form the ~100 cell pre-implantation embryo. Despite the vast size range across cell types, cells of a given type are typically uniform in size likely because cells are able to accurately couple cell growth to division3–6. While some genes whose disruption in mammalian cells affects cell size have been identified, the molecular mechanisms through which cell growth drives cell division have remained elusive7–12. Here, we show that cell growth acts to dilute the cell cycle inhibitor Rb to drive cell cycle progression from G1 to S phase in human cells. In contrast, other G1/S regulators remained at nearly constant concentration. Rb is a stable protein that is synthesized during S and G2 phases in an amount that is independent of cell size. Equal partitioning to daughter cells of chromatin bound Rb then ensures that all cells at birth inherit a similar amount of Rb protein. RB overexpression increased cell size in tissue culture and a mouse cancer model, while RB deletion decreased cell size and removed the inverse correlation between cell size at birth and the duration of G1 phase. Thus, Rb-dilution by cell growth in G1 provides a long-sought cell autonomous molecular mechanism for cell size homeostasis.


Author(s):  
M. Rosner ◽  
A. Kowalska ◽  
A. Freilinger ◽  
A-R. Prusa ◽  
E. Marton ◽  
...  

1941 ◽  
Vol 19c (10) ◽  
pp. 371-382 ◽  
Author(s):  
Mary MacArthur ◽  
R. H. Wetmore

Growth in the various tissues of the fruit of a McIntosh Red and a Wagener tree, both self-pollinated, is compared. For several days succeeding pollination no increase in fruit size is apparent. Fertilization is followed by general cell division and cell enlargement. The period of cell division varies with the tissue and with the variety. Final cell size is reached first by the cells of those tissues near the centre of the apple. Impressed upon the fundamental pattern of growth is the localized activity of the primary vascular bundles, the cambia of which add cells to the ground tissue. Angulation in the Wagener is accentuated by this activity. With the exception of cells of the epidermis, final cell size is approximately equal in comparable regions of the two varieties. Differences in regional extent are due to differences in numbers of cells in that region.


1984 ◽  
Vol 11 (6) ◽  
pp. 553 ◽  
Author(s):  
ME Nicolas ◽  
RM Gleadow ◽  
MJ Dalling

The effects of two levels of temperature and of water supply on grain development of wheat (cv. Warigal) were studied by imposing treatments during the early or late period of cell division. High temperature (28°C day/20°C night) accelerated development of the grain. Dry matter accumulation and cell division proceeded at a higher rate but had a shorter duration in the high temperature treatments. Maximum cell number, final cell size and the number of large starch granules per cell were not significantly reduced by high temperature. Drought and drought × high temperature reduced the storage capacity of the grain, with a decrease in number of cells and starch granules in the endosperm. Cell size was also reduced when treatments were imposed late during cell division. Duration of dry matter accumulation and cell division was reduced in the drought and drought × high temperature treatments. The combined effects of drought and high temperature were much more severe than those of each separate treatment. The amount of sucrose per cell was similar in all treatments. It appears unlikely that the supply of sucrose to the endosperm cells is the main limiting factor of dry matter accumulation in both drought and high temperature treatments.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 539g-539
Author(s):  
Raouel Cano-Medrano ◽  
Rebecca L. Darnell

Exogenous applications of GA, have induced pathenocarpic fruit set in blueberry; however, size of GA,-treated fruit is smaller than pollinated fruit. The small fruit size in GA3-treated fruit may be related to either cell number and/or cell size. Thus, these parameters were examined throughout development in pollinated, non-pollinated and GA3-treated fruits. Fruit growth followed a double sigmoid pattern. During Stage I (0-25 DAA), fruit size in GA,-treated, pollinated, and non-pollinated fruits averaged 0.33, 0.39, and 0.16 g, respectively. There was little change in fruit size in Stage II (25-45 DAA). At ripening, fruit size averaged 1.7 g for GA,-treated and 2.6 g for pollinated fruits. Non-pollinated fruit abscised in Stage II. At anthesis, mesocarp cell number averaged 9910 cells per median cross sectional area and remained constant up to ripening. In Stage I, cell size in G A3-treated and pollinated fruits increased 7X and 9X respectively. Cell size in both fruit types increased 1.5X and 2.8X during Stage II and Stage 111, respectively. Fruit cell number was set at anthesis and differences in fruit size were due to differences in cell ellongation in Stage I.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Yubing Li ◽  
Dianyi Liu ◽  
Cristina López-Paz ◽  
Bradley JSC Olson ◽  
James G Umen

Proliferating cells actively control their size by mechanisms that are poorly understood. The unicellular green alga Chlamydomonas reinhardtii divides by multiple fission, wherein a ‘counting’ mechanism couples mother cell-size to cell division number allowing production of uniform-sized daughters. We identified a sizer protein, CDKG1, that acts through the retinoblastoma (RB) tumor suppressor pathway as a D-cyclin-dependent RB kinase to regulate mitotic counting. Loss of CDKG1 leads to fewer mitotic divisions and large daughters, while mis-expression of CDKG1 causes supernumerous mitotic divisions and small daughters. The concentration of nuclear-localized CDKG1 in pre-mitotic cells is set by mother cell size, and its progressive dilution and degradation with each round of cell division may provide a link between mother cell-size and mitotic division number. Cell-size-dependent accumulation of limiting cell cycle regulators such as CDKG1 is a potentially general mechanism for size control.


Sign in / Sign up

Export Citation Format

Share Document