Malignancy- and Metastasis-Related Cell Properties

Author(s):  
B. Hagmar ◽  
L.-J. Erkell ◽  
W. Ryd
Keyword(s):  
2016 ◽  
Vol 54 (12) ◽  
pp. 1343-1404
Author(s):  
G Metzger ◽  
P Di Fazio ◽  
DK Bartsch ◽  
T Gress ◽  
TT Wissniowski

2021 ◽  
Vol 22 (15) ◽  
pp. 7960
Author(s):  
Chao-Yi Wu ◽  
Huang-Yu Yang ◽  
Jing-Long Huang ◽  
Jenn-Haung Lai

Monocytes (Mos) and macrophages (Mφs) are key players in the innate immune system and are critical in coordinating the initiation, expansion, and regression of many autoimmune diseases. In addition, they display immunoregulatory effects that impact inflammation and are essential in tissue repair and regeneration. Juvenile idiopathic arthritis (JIA) is an umbrella term describing inflammatory joint diseases in children. Accumulated evidence suggests a link between Mo and Mφ activation and JIA pathogenesis. Accordingly, topics regarding the signals and mechanisms regulating Mo and Mφ activation leading to pathologies in patients with JIA are of great interest. In this review, we critically summarize recent advances in the understanding of how Mo and Mφ activation is involved in JIA pathogenesis and focus on the signaling pathways and mechanisms participating in the related cell activation processes.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Lan Jin ◽  
Yunhe Chen ◽  
Dan Cheng ◽  
Zhikai He ◽  
Xinyi Shi ◽  
...  

AbstractColorectal cancer (CRC) is one of the most aggressive and lethal cancers. The role of autophagy in the pathobiology of CRC is intricate, with opposing functions manifested in different cellular contexts. The Yes-associated protein (YAP), a transcriptional coactivator inactivated by the Hippo tumor-suppressor pathway, functions as an oncoprotein in a variety of cancers. In this study, we found that YAP could negatively regulate autophagy in CRC cells, and consequently, promote tumor progression of CRC in vitro and in vivo. Mechanistically, YAP interacts with TEAD forming a complex to upregulate the transcription of the apoptosis-inhibitory protein Bcl-2, which may subsequently facilitate cell survival by suppressing autophagy-related cell death; silencing Bcl-2 expression could alleviate YAP-induced autophagy inhibition without affecting YAP expression. Collectively, our data provide evidence for YAP/Bcl-2 as a potential therapeutic target for drug exploration against CRC.


2020 ◽  
Vol 168 (1) ◽  
pp. 1-6
Author(s):  
Chikashi Yoshimura ◽  
Akiomi Nagasaka ◽  
Hitoshi Kurose ◽  
Michio Nakaya

Abstract Myocardial infarction is one of the major causes of death worldwide. Many heart cells die during myocardial infarction through various processes such as necrosis, apoptosis, necroptosis, autophagy-related cell death, pyroptosis and ferroptosis. These dead cells in infarcted hearts expose the so-called ‘eat-me’ signals, such as phosphatidylserine, on their surfaces, enhancing their removal by professional and non-professional phagocytes. Clearance of dead cells by phagocytes in the diseased hearts plays a crucial role in the pathology of myocardial infarction by inhibiting the inflammatory responses caused by the leakage of contents from dead cells. This review focuses on the rapidly growing understanding of the molecular mechanisms of dead cell phagocytosis, termed efferocytosis, during myocardial infarction, which contributes to the pathophysiology of myocardial infarction.


2014 ◽  
Vol 3 (5) ◽  
pp. 1099-1111 ◽  
Author(s):  
Blanca D. Lopez‐Ayllon ◽  
Veronica Moncho‐Amor ◽  
Ander Abarrategi ◽  
Inmaculada Ibañez Cáceres ◽  
Javier Castro‐Carpeño ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document