Nucleic acids as the genetic material

1980 ◽  
pp. 16-28
Author(s):  
R. A. Woods
2015 ◽  
Vol 51 (37) ◽  
pp. 7887-7890 ◽  
Author(s):  
Hideto Maruyama ◽  
Kazuhiro Furukawa ◽  
Hiroyuki Kamiya ◽  
Noriaki Minakawa ◽  
Akira Matsuda

Synthetic chemically modified nucleic acids, which are compatible with DNA/RNA polymerases, have great potential as a genetic material for synthetic biological studies.


Author(s):  
A. A. Mikheev ◽  
E. V. Shmendel ◽  
E. S. Zhestovskaya ◽  
G. V. Nazarov ◽  
M. A. Maslov

Objectives. Gene therapy is based on the introduction of genetic material into cells, tissues, or organs for the treatment of hereditary or acquired diseases. A key factor in the success of gene therapy is the development of delivery systems that can efficiently transfer genetic material to the place of their therapeutic action without causing any associated side effects. Over the past 10 years, significant effort has been directed toward creating more efficient and biocompatible vectors capable of transferring nucleic acids (NAs) into cells without inducing an immune response. Cationic liposomes are among the most versatile tools for delivering NAs into cells; however, the use of liposomes for gene therapy is limited by their low specificity. This is due to the presence of various biological barriers to the complex of liposomes with NA, including instability in biological fluids, interaction with serum proteins, plasma and nuclear membranes, and endosomal degradation. This review summarizes the results of research in recent years on the development of cationic liposomes that are effective in vitro and in vivo. Particular attention is paid to the individual structural elements of cationic liposomes that determine the transfection efficiency and cytotoxicity. The purpose of this review was to provide a theoretical justification of the most promising choice of cationic liposomes for the delivery of NAs into eukaryotic cells and study the effect of the composition of cationic lipids (CLs) on the transfection efficiency in vitro.Results. As a result of the analysis of the related literature, it can be argued that one of the most promising delivery systems of NAs is CL based on cholesterol and spermine with the addition of a helper lipid DOPE. In addition, it was found that varying the composition of cationic liposomes, the ratio of CL to NA, or the size and zeta potential of liposomes has a significant effect on the transfection efficiency.Conclusions. Further studies in this direction should include optimization of the conditions for obtaining cationic liposomes, taking into account the physicochemical properties and established laws. It is necessary to identify mechanisms that increase the efficiency of NA delivery in vitro by searching for optimal structures of cationic liposomes, determining the ratio of lipoplex components, and studying the delivery efficiency and properties of multicomponent liposomes.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1075
Author(s):  
Sagun Poudel ◽  
Prabhat R. Napit ◽  
Karen P. Briski ◽  
George Mattheolabakis

Despite the apparent advantages for long-term treatment and local therapies against intestinal diseases, the oral delivery of nucleic acids has been challenging due to unfavorable physiological conditions for their stability. In this study, a novel nanodelivery system of PEG-PCL nanoparticles with encapsulated nucleic acids–mannosylated PEI (Man-PEI) complexes was developed for intestinal delivery. We complexed model nucleic acids with Man-PEI at the optimal N/P ratio of 20:1 for in vitro and in vivo analyses. Cells were transfected in vitro and analyzed for gene expression, receptor-mediated uptake, and PEG-PCL nanoparticles’ toxicity. We also evaluated the nucleic acid’s stability in the nanocarrier during formulation, and under simulated gastrointestinal environments or the presence of nucleases. Finally, we assessed the biodistribution for the PEG-PCL nanoparticles with encapsulated complexes and their ability to transfect intestinal cells in vivo. Nucleic acids complexed with Man-PEI were protected from degradation against nucleases. In comparison to the parent compound PEI, Man-PEI transfected the cells with an overall higher potency. Competition assay indicated receptor-mediated endocytosis promoted by mannose receptors. The PEG-PCL nanoparticles with Man-PEI/plasmid complexes indicated minimal cytotoxicity. The nanocarrier successfully protected the complexes in a simulated gastric fluid environment and released them in a simulated intestinal fluid environment, promoted by the presence of lipases. The oral administration of the PEG-PCL nanoparticles with encapsulated Man-PEI/plasmid complexes transfected intestinal cells with the plasmid in vivo, while presenting a time-dependent progression through the intestines. Conclusively, our carrier system can deliver genetic material to the GI tract and actively target mannose receptor overexpressing cells.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1585
Author(s):  
Emanuele Luigi Sciuto ◽  
Antonio Alessio Leonardi ◽  
Giovanna Calabrese ◽  
Giovanna De Luca ◽  
Maria Anna Coniglio ◽  
...  

The analysis of viral nucleic acids (NA), DNA or RNA, is a crucial issue in the diagnosis of infections and the treatment and prevention of related human diseases. Conventional nucleic acid tests (NATs) require multistep approaches starting from the purification of the pathogen genetic material in biological samples to the end of its detection, basically performed by the consolidated polymerase chain reaction (PCR), by the use of specialized instruments and dedicated laboratories. However, since the current NATs are too constraining and time and cost consuming, the research is evolving towards more integrated, decentralized, user-friendly, and low-cost methods. These will allow the implementation of massive diagnoses addressing the growing demand of fast and accurate viral analysis facing such global alerts as the pandemic of coronavirus disease of the recent period. Silicon-based technology and microfluidics, in this sense, brought an important step up, leading to the introduction of the genetic point-of-care (PoC) systems. This review goes through the evolution of the analytical methods for the viral NA diagnosis of infection diseases, highlighting both advantages and drawbacks of the innovative emerging technologies versus the conventional approaches.


2020 ◽  
Author(s):  
Erika Ganda ◽  
Kristen L. Beck ◽  
Niina Haiminen ◽  
Ban Kawas ◽  
Brittany Cronk ◽  
...  

ABSTRACTAbstractUntargeted sequencing of nucleic acids present in food can inform the detection of food safety and origin, as well as product tampering and mislabeling issues. The application of such technologies to food analysis could reveal valuable insights that are simply unobtainable by targeted testing, leading to the efforts of applying such technologies in the food industry. However, before these approaches can be applied, it is imperative to verify that the most appropriate methods are used at every step of the process: gathering primary material, laboratory methods, data analysis, and interpretation.The focus of this study is in gathering the primary material, in this case, DNA. We used bovine milk as a model to 1) evaluate commercially available kits for their ability to extract nucleic acids from inoculated bovine milk; 2) evaluate host DNA depletion methods for use with milk, and 3) develop and evaluate a selective lysis-PMA based protocol for host DNA depletion in milk.Our results suggest that magnetic-based nucleic acid extraction methods are best for nucleic acid isolation of bovine milk. Removal of host DNA remains a challenge for untargeted sequencing of milk, highlighting that the individual matrix characteristics should always be considered in food testing. Some reported methods introduce bias against specific types of microbes, which may be particularly problematic in food safety where the detection of Gram-negative pathogens and indicators is essential. Continuous efforts are needed to develop and validate new approaches for untargeted metagenomics in samples with large amounts of DNA from a single host.ImportanceTracking the bacterial communities present in our food has the potential to inform food safety and product origin. To do so, the entire genetic material present in a sample is extracted using chemical methods or commercially available kits and sequenced using next-generation platforms to provide a snapshot of what the relative composition looks like. Because the genetic material of higher organisms present in food (e.g., cow in milk or beef, wheat in flour) is around one thousand times larger than the bacterial content, challenges exist in gathering the information of interest. Additionally, specific bacterial characteristics can make them easier or harder to detect, adding another layer of complexity to this issue. In this study, we demonstrate the impact of using different methods in the ability of detecting specific bacteria and highlight the need to ensure that the most appropriate methods are being used for each particular sample.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 705 ◽  
Author(s):  
Nicola Salvatore Orefice

Gene therapy is a therapeutic strategy of delivering foreign genetic material (encoding for an important protein) into a patient’s target cell to replace a defective gene. Nucleic acids are embedded within the adeno-associated virus (AAVs) vectors; however, preexisting immunity to AAVs remains a significant concern that impairs their clinical application. Extracellular vesicles (EVs) hold great potential for therapeutic applications as vectors of nucleic acids due to their endogenous intercellular communication functions through their cargo delivery, including lipids and proteins. So far, small RNAs (siRNA and micro (mi)RNA) have been mainly loaded into EVs to treat several diseases, but the potential use of EVs to load and deliver exogenous plasmid DNA has not been thoroughly described. This review provides a comprehensive overview of the principal methodologies currently employed to load foreign genetic material into EVs, highlighting the need to find the most effective strategies for their successful clinical translation.


2009 ◽  
Vol 8 (2) ◽  
pp. 69-74 ◽  
Author(s):  
Felisa Wolfe-Simon ◽  
Paul C.W. Davies ◽  
Ariel D. Anbar

AbstractAll known life requires phosphorus (P) in the form of inorganic phosphate (PO43−or Pi) and phosphate-containing organic molecules. Piserves as the backbone of the nucleic acids that constitute genetic material and as the major repository of chemical energy for metabolism in polyphosphate bonds. Arsenic (As) lies directly below P on the periodic table and so the two elements share many chemical properties, although their chemistries are sufficiently dissimilar that As cannot directly replace P in modern biochemistry. Arsenic is toxic because As and P are similar enough that organisms attempt this substitution. We hypothesize that ancient biochemical systems, analogous to but distinct from those known today, could have utilized arsenate in the equivalent biological role as phosphate. Organisms utilizing such ‘weird life’ biochemical pathways may have supported a ‘shadow biosphere’ at the time of the origin and early evolution of life on Earth or on other planets. Such organisms may even persist on Earth today, undetected, in unusual niches.


Author(s):  
Charles Schaper

Exogenous RNA comprises the genetic material associated with several diseases which require immediate treatment, and thus mechanisms to hinder intracellular translation and reproduction of RNA viral agents are of great importance. Applying recent developments from this lab in methods relating to the interaction of DNA with steroid hormones, cyclic compounds are presented for intermolecular binding to nucleic acids. The requirements to achieve binding with RNA nucleotide pairs are described, which involve at a minimum functional elements positioned to interact with the lateral phosphate groups for each of the RNA strands through coupling with a positively charged ion, such as Mg2+, Ca2+, or Zn2+ ions; and an intermolecular hydrogen bond with the oxygen element of uracil at the carbon two location. Additional features of the binding molecules are examined for enhancements and differentiation in binding capability and include aromatic groups that have both a structural role of steric hindrance and a functional role to stabilize the binding mechanisms. Several categories of cyclic compounds are associated to have specific binding capabilities, and the interaction of these structures with potential receptor molecules are evaluated for assessment in delivery and binding of the compound to nucleic acids.


Sign in / Sign up

Export Citation Format

Share Document