The Role of Tissue Non-specific Alkaline Phosphatase (TNAP) in Neurodegenerative Diseases: Alzheimer’s Disease in the Focus

Author(s):  
Katherine A. B. Kellett ◽  
Nigel M. Hooper
2018 ◽  
Vol 7 (11) ◽  
pp. 461 ◽  
Author(s):  
Young-Kook Kim ◽  
Juhyun Song

Long noncoding RNAs (lncRNAs) are involved in diverse physiological and pathological processes by modulating gene expression. They have been found to be dysregulated in the brain and cerebrospinal fluid of patients with neurodegenerative diseases, and are considered promising therapeutic targets for treatment. Among the various neurodegenerative diseases, diabetic Alzheimer’s disease (AD) has been recently emerging as an important issue due to several unexpected reports suggesting that metabolic issues in the brain, such as insulin resistance and glucose dysregulation, could be important risk factors for AD. To facilitate understanding of the role of lncRNAs in this field, here we review recent studies on lncRNAs in AD and diabetes, and summarize them with different categories associated with the pathogenesis of the diseases including neurogenesis, synaptic dysfunction, amyloid beta accumulation, neuroinflammation, insulin resistance, and glucose dysregulation. It is essential to understand the role of lncRNAs in the pathogenesis of diabetic AD from various perspectives for therapeutic utilization of lncRNAs in the near future.


2020 ◽  
Vol 21 (18) ◽  
pp. 6739
Author(s):  
Sharmeelavathi Krishnan ◽  
Yasaswi Shrestha ◽  
Dona P. W. Jayatunga ◽  
Sarah Rea ◽  
Ralph Martins ◽  
...  

Neurodegenerative diseases result in a range of conditions depending on the type of proteinopathy, genes affected or the location of the degeneration in the brain. Proteinopathies such as senile plaques and neurofibrillary tangles in the brain are prominent features of Alzheimer’s disease (AD). Autophagy is a highly regulated mechanism of eliminating dysfunctional organelles and proteins, and plays an important role in removing these pathogenic intracellular protein aggregates, not only in AD, but also in other neurodegenerative diseases. Activating autophagy is gaining interest as a potential therapeutic strategy for chronic diseases featuring protein aggregation and misfolding, including AD. Although autophagy activation is a promising intervention, over-activation of autophagy in neurodegenerative diseases that display impaired lysosomal clearance may accelerate pathology, suggesting that the success of any autophagy-based intervention is dependent on lysosomal clearance being functional. Additionally, the effects of autophagy activation may vary significantly depending on the physiological state of the cell, especially during proteotoxic stress and ageing. Growing evidence seems to favour a strategy of enhancing the efficacy of autophagy by preventing or reversing the impairments of the specific processes that are disrupted. Therefore, it is essential to understand the underlying causes of the autophagy defect in different neurodegenerative diseases to explore possible therapeutic approaches. This review will focus on the role of autophagy during stress and ageing, consequences that are linked to its activation and caveats in modulating this pathway as a treatment.


2020 ◽  
Vol 21 (22) ◽  
pp. 8767
Author(s):  
Nicole Jacqueline Jensen ◽  
Helena Zander Wodschow ◽  
Malin Nilsson ◽  
Jørgen Rungby

Under normal physiological conditions the brain primarily utilizes glucose for ATP generation. However, in situations where glucose is sparse, e.g., during prolonged fasting, ketone bodies become an important energy source for the brain. The brain’s utilization of ketones seems to depend mainly on the concentration in the blood, thus many dietary approaches such as ketogenic diets, ingestion of ketogenic medium-chain fatty acids or exogenous ketones, facilitate significant changes in the brain’s metabolism. Therefore, these approaches may ameliorate the energy crisis in neurodegenerative diseases, which are characterized by a deterioration of the brain’s glucose metabolism, providing a therapeutic advantage in these diseases. Most clinical studies examining the neuroprotective role of ketone bodies have been conducted in patients with Alzheimer’s disease, where brain imaging studies support the notion of enhancing brain energy metabolism with ketones. Likewise, a few studies show modest functional improvements in patients with Parkinson’s disease and cognitive benefits in patients with—or at risk of—Alzheimer’s disease after ketogenic interventions. Here, we summarize current knowledge on how ketogenic interventions support brain metabolism and discuss the therapeutic role of ketones in neurodegenerative disease, emphasizing clinical data.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 90
Author(s):  
Gagandeep Kaur ◽  
Suraj Singh S. Rathod ◽  
Mohammed M. Ghoneim ◽  
Sultan Alshehri ◽  
Javed Ahmad ◽  
...  

DNA methylation, in the mammalian genome, is an epigenetic modification that involves the transfer of a methyl group on the C5 position of cytosine to derive 5-methylcytosine. The role of DNA methylation in the development of the nervous system and the progression of neurodegenerative diseases such as Alzheimer’s disease has been an interesting research area. Furthermore, mutations altering DNA methylation affect neurodevelopmental functions and may cause the progression of several neurodegenerative diseases. Epigenetic modifications in neurodegenerative diseases are widely studied in different populations to uncover the plausible mechanisms contributing to the development and progression of the disease and detect novel biomarkers for early prognosis and future pharmacotherapeutic targets. In this manuscript, we summarize the association of DNA methylation with the pathogenesis of the most common neurodegenerative diseases, such as, Alzheimer’s disease, Parkinson’s disease, Huntington diseases, and amyotrophic lateral sclerosis, and discuss the potential of DNA methylation as a potential biomarker and therapeutic tool for neurogenerative diseases.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2485 ◽  
Author(s):  
Bharath Velmurugan ◽  
Baskaran Rathinasamy ◽  
Bharathi Lohanathan ◽  
Varadharajan Thiyagarajan ◽  
Ching-Feng Weng

Neurodegenerative diseases are normally distinguished as disorders with loss of neurons. Various compounds are being tested to treat neurodegenerative diseases (NDs) but they possess solitary symptomatic advantages with numerous side effects. Accumulative studies have been conducted to validate the benefit of phytochemicals to treat neurodegenerative diseases including Alzheimer’s disease (AD) and Parkinson’s disease (PD). In this present review we explored the potential efficacy of phytochemicals such as epigallocatechin-3-galate, berberin, curcumin, resveratrol, quercetin and limonoids against the most common NDs, including Alzheimer’s disease (AD) and Parkinson’s disease (PD). The beneficial potentials of these phytochemicals have been demonstrated by evidence-based but more extensive investigation needs to be conducted for reducing the progression of AD and PD.


2008 ◽  
Vol 19 (7) ◽  
pp. 3052-3069 ◽  
Author(s):  
Kai-Hui Sun ◽  
Yolanda de Pablo ◽  
Fabien Vincent ◽  
Emmanuel O. Johnson ◽  
Angela K. Chavers ◽  
...  

Golgi fragmentation is a common feature in multiple neurodegenerative diseases; however, the precise mechanism that causes fragmentation remains obscure. A potential link between Cdk5 and Golgi fragmentation in Alzheimer's disease (AD) was investigated in this study. Because Golgi is physiologically fragmented during mitosis by Cdc2 kinase and current Cdk5-specific chemical inhibitors target Cdc2 as well, development of novel tools to modulate Cdk5 activity was essential. These enzyme modulators, created by fusing TAT sequence to Cdk5 activators and an inhibitor peptide, enable specific activation and inhibition of Cdk5 activity with high temporal control. These genetic tools revealed a major role of Cdk5 in Golgi fragmentation upon β-amyloid and glutamate stimulation in differentiated neuronal cells and primary neurons. A crucial role of Cdk5 was further confirmed when Cdk5 activation alone resulted in robust Golgi disassembly. The underlying mechanism was unraveled using a chemical genetic screen, which yielded cis-Golgi matrix protein GM130 as a novel substrate of Cdk5. Identification of the Cdk5 phosphorylation site on GM130 suggested a mechanism by which Cdk5 may cause Golgi fragmentation upon deregulation in AD. As Cdk5 is activated in several neurodegenerative diseases where Golgi disassembly also occurs, this may be a common mechanism among multiple disorders.


2021 ◽  
Author(s):  
Heng Lin ◽  
Maoping Tang ◽  
Changyi Ji ◽  
Peter Girardi ◽  
Gregor Cvetojevic ◽  
...  

AbstractThe decline in proteostasis during aging is a major contributing factor to increased susceptibility to neurodegenerative diseases such as Alzheimer’s disease. Although dysfunction of the autophagy pathway is likely one of the contributors, emerging studies implicate that impairment of the endosome-lysosome pathway is also a significant factor in the pathogenesis of these diseases. Our lab was the first to demonstrate that BAG3 facilitates phosphorylated tau clearance through autophagy. However, we did not fully define the mechanisms by which BAG3 regulates endogenous tau proteostasis. Here, we applied mass spectrometric analyses and found a major group of neuronal BAG3 interactors are in the endocytic pathway. Among them were key regulators of small GTPases. Excitingly one of these was the Rab35 GTPase activating protein, TBC1D10B. Our data demonstrate that a BAG3-HSP70-TBC1D10B complex attenuates the ability of TBC1D10B to inactivate Rab35. Thus BAG3, through its interaction with TBC1D10B supports the activation of Rab35 and recruitment of Hrs, which initiates ESCRT-mediated endosomal tau clearance. Further, intrahippocampal expression of BAG3 in P301S mice increased the co-localization of phospho-tau with the ESCRT III protein CHMP2B and reduced the levels of the mutant human tau. Overall, our data provide evidence of a novel BAG3-TBC1D10B-Rab35 regulatory axis in modulating vacuolar dependent protein degradation machinery through ESCRT. These findings expand our understanding of the role of BAG3 in neuronal proteostasis, and how dysregulation could contribute to the pathogenesis of Alzheimer’s disease, as well as other neurodegenerative diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Barbara Rossi ◽  
Bruno Santos-Lima ◽  
Eleonora Terrabuio ◽  
Elena Zenaro ◽  
Gabriela Constantin

Neurodegenerative diseases are closely related to inflammatory and autoimmune events, suggesting that the dysregulation of the immune system is a key pathological factor. Both multiple sclerosis (MS) and Alzheimer's disease (AD) are characterized by infiltrating immune cells, activated microglia, astrocyte proliferation, and neuronal damage. Moreover, MS and AD share a common pro-inflammatory signature, characterized by peripheral leukocyte activation and transmigration to the central nervous system (CNS). MS and AD are both characterized by the accumulation of activated neutrophils in the blood, leading to progressive impairment of the blood–brain barrier. Having migrated to the CNS during the early phases of MS and AD, neutrophils promote local inflammation that contributes to pathogenesis and clinical progression. The role of circulating T cells in MS is well-established, whereas the contribution of adaptive immunity to AD pathogenesis and progression is a more recent discovery. Even so, blocking the transmigration of T cells to the CNS can benefit both MS and AD patients, suggesting that common adaptive immunity mechanisms play a detrimental role in each disease. There is also growing evidence that regulatory T cells are beneficial during the initial stages of MS and AD, supporting the link between the modulatory immune compartments and these neurodegenerative disorders. The number of resting regulatory T cells declines in both diseases, indicating a common pathogenic mechanism involving the dysregulation of these cells, although their precise role in the control of neuroinflammation remains unclear. The modulation of leukocyte functions can benefit MS patients, so more insight into the role of peripheral immune cells may reveal new targets for pharmacological intervention in other neuroinflammatory and neurodegenerative diseases, including AD.


Sign in / Sign up

Export Citation Format

Share Document