Current Consumption Analysis of AES and PRESENT Encryption Algorithms in FPGA Using the Welch Method

Author(s):  
William P. Maia ◽  
Edward D. Moreno
Author(s):  
I. Österreicher ◽  
S. Eckl ◽  
B. Tippelt ◽  
S. Döring ◽  
R. Prang ◽  
...  

Abstract Depending on the field of application the ICs have to meet requirements that differ strongly from product to product, although they may be manufactured with similar technologies. In this paper a study of a failure mode is presented that occurs on chips which have passed all functional tests. Small differences in current consumption depending on the state of an applied pattern (delta Iddq measurement) are analyzed, although these differences are clearly within the usual specs. The challenge to apply the existing failure analysis techniques to these new fail modes is explained. The complete analysis flow from electrical test and Global Failure Localization to visualization is shown. The failure is localized by means of photon emission microscopy, further analyzed by Atomic Force Probing, and then visualized by SEM and TEM imaging.


2014 ◽  
Vol 1 (1) ◽  
Author(s):  
Colby Doyle ◽  
Matthew Gaudet ◽  
Dominic Lay ◽  
Amber McLeod ◽  
Robert Schaeffer

The primary goal of this research is to identify and examine the components of responsible drinking advertisements. We will examine industry and government related advertisements as we try to understand one of our major questions: does the source influence the validity of the message? The next group of major questions that we will be looking to answer is how are the vague quantifiers used in responsible drinking campaigns interpreted by the public?  How many drinks do people consider “too much?” What does “drink responsibly” really mean? The third major question is whether or not an individual’s current consumption patterns of alcohol have any effect on how individuals assess responsible drinking campaigns. Our qualitative research has indicated that social influences can be strongly related with drinking patterns; this will be further examined in our quantitative research. Also, we will be looking into some of the psychology behind industry and government sponsored advertisements as well as gathering and interpreting information from a sample of our target demographic. Our target demographic consists of both male and females between the ages 18-24. Our literature review and qualitative analysis gave us good insight into some of the potential answers to our questions. We will use these potential answers from our previous research to guide us as we attempt to conduct conclusive research based on a sample data of 169 individuals. Our findings will aid us in developing conclusions and recommendations for Alberta Health Services.


2015 ◽  
Vol 8 (1) ◽  
pp. 206-210 ◽  
Author(s):  
Yu Junyang ◽  
Hu Zhigang ◽  
Han Yuanyuan

Current consumption of cloud computing has attracted more and more attention of scholars. The research on Hadoop as a cloud platform and its energy consumption has also received considerable attention from scholars. This paper presents a method to measure the energy consumption of jobs that run on Hadoop, and this method is used to measure the effectiveness of the implementation of periodic tasks on the platform of Hadoop. Combining with the current mainstream of energy estimate formula to conduct further analysis, this paper has reached a conclusion as how to reduce energy consumption of Hadoop by adjusting the split size or using appropriate size of workers (servers). Finally, experiments show the effectiveness of these methods as being energy-saving strategies and verify the feasibility of the methods for the measurement of periodic tasks at the same time.


Author(s):  
John Myles

Three challenges are highlighted in this chapter to the realization of the social investment strategy in our twenty-first-century world. The first such challenge—intertemporal politics—lies in the term ‘investment’, a willingness to forego some measure of current consumption in order to realize often uncertain gains in the future that would not occur otherwise, such as better schooling, employment, and wage outcomes for the next generation. Second, the conditions that enabled our post-war predecessors to invest heavily in future-oriented public goods—a sustained period of economic growth and historically exceptional tolerance for high levels of taxation—no longer obtain. Third, the millennial cohorts who will bear the costs of a new, post-industrial, investment strategy are more economically divided than earlier cohorts and face multiple demands raised by issues such as population aging and global warming, among others.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 792
Author(s):  
Oleksandr Drozd ◽  
Grzegorz Nowakowski ◽  
Anatoliy Sachenko ◽  
Viktor Antoniuk ◽  
Volodymyr Kochan ◽  
...  

This paper presents a power-oriented monitoring of clock signals that is designed to avoid synchronization failure in computer systems such as FPGAs. The proposed design reduces power consumption and increases the power-oriented checkability in FPGA systems. These advantages are due to improvements in the evaluation and measurement of corresponding energy parameters. Energy parameter orientation has proved to be a good solution for detecting a synchronization failure that blocks logic monitoring circuits. Key advantages lay in the possibility to detect a synchronization failure hidden in safety-related systems by using traditional online testing that is based on logical checkability. Two main types of power-oriented monitoring are considered: detecting a synchronization failure based on the consumption and the dissipation of power, which uses temperature and current consumption sensors, respectively. The experiments are performed on real FPGA systems with the controlled synchronization disconnection and the use of the computer-aided design (CAD) utility to estimate the decreasing values of the energy parameters. The results demonstrate the limited checkability of FPGA systems when using the thermal monitoring of clock signals and success in monitoring by the consumption current.


2021 ◽  
Vol 11 (3) ◽  
pp. 1331
Author(s):  
Mohammad Hossein Same ◽  
Gabriel Gleeton ◽  
Gabriel Gandubert ◽  
Preslav Ivanov ◽  
Rene Jr Landry

By increasing the demand for radio frequency (RF) and access of hackers and spoofers to low price hardware and software defined radios (SDR), radio frequency interference (RFI) became a more frequent and serious problem. In order to increase the security of satellite communication (Satcom) and guarantee the quality of service (QoS) of end users, it is crucial to detect the RFI in the desired bandwidth and protect the receiver with a proper mitigation mechanism. Digital narrowband signals are so sensitive into the interference and because of their special power spectrum shape, it is hard to detect and eliminate the RFI from their bandwidth. Thus, a proper detector requires a high precision and smooth estimation of input signal power spectral density (PSD). By utilizing the presented power spectrum by the simplified Welch method, this article proposes a solid and effective algorithm that can find all necessary interference parameters in the frequency domain while targeting practical implantation for the embedded system with minimum complexity. The proposed detector can detect several multi narrowband interferences and estimate their center frequency, bandwidth, power, start, and end of each interference individually. To remove multiple interferences, a chain of several infinite impulse response (IIR) notch filters with multiplexers is proposed. To minimize damage to the original signal, the bandwidth of each notch is adjusted in a way that maximizes the received signal to noise ratio (SNR) by the receiver. Multiple carrier wave interferences (MCWI) is utilized as a jamming attack to the Digital Video Broadcasting-Satellite-Second Generation (DVB-S2) receiver and performance of a new detector and mitigation system is investigated and validated in both simulation and practical tests. Based on the obtained results, the proposed detector can detect a weak power interference down to −25 dB and track a hopping frequency interference with center frequency variation speed up to 3 kHz. Bit error ratio (BER) performance shows 3 dB improvement by utilizing new adaptive mitigation scenario compared to non-adaptive one. Finally, the protected DVB-S2 can receive the data with SNR close to the normal situation while it is under the attack of the MCWI jammer.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 235
Author(s):  
Nicolò Maria Ippolito ◽  
Ionela Birloaga ◽  
Francesco Ferella ◽  
Marcello Centofanti ◽  
Francesco Vegliò

The present paper is focused on the extraction of gold from high-grade e-waste, i.e., spent electronic connectors and plates, by leaching and electrowinning. These connectors are usually made up of an alloy covered by a layer of gold; sometimes, in some of them, a plastic part is also present. The applied leaching system consisted of an acid solution of diluted sulfuric acid (0.2 mol/L) with thiourea (20 g/L) as a reagent and ferric sulfate (21.8 g/L) as an oxidant. This system was applied on three different high-grade e-waste, namely: (1) Connectors with the partial gold-plated surface (Au concentration—1139 mg/kg); (2) different types of connectors with some of which with completely gold-plated surface (Au concentration—590 mg/kg); and (3) connectors and plates with the completely gold-plated surface (Au concentration—7900 mg/kg). Gold dissolution yields of 52, 94, and 49% were achieved from the first, second, and third samples, respectively. About 95% of Au recovery was achieved after 1.5 h of electrowinning at a current efficiency of only 4.06% and current consumption of 3.02 kWh/kg of Au from the leach solution of the third sample.


Sign in / Sign up

Export Citation Format

Share Document