Plant Antimicrobial Peptides: Next-Generation Bioactive Molecules for Plant Protection

Author(s):  
Paomipem Phazang ◽  
Neelam Prabha Negi ◽  
Meenakshi Raina ◽  
Deepak Kumar
2021 ◽  
Vol 22 (3) ◽  
pp. 1014
Author(s):  
Aleksandra Tymoszewska ◽  
Tamara Aleksandrzak-Piekarczyk

The emergence of antibiotic-resistant bacteria led to an urgent need for next-generation antimicrobial agents with novel mechanisms of action. The use of positively charged antimicrobial peptides that target cytoplasmic membrane is an especially promising strategy since essential functions and the conserved structure of the membrane hinder the development of bacterial resistance. Aureocin A53- and enterocin L50-like bacteriocins are highly cationic, membrane-targeting antimicrobial peptides that have potential as next-generation antibiotics. However, the mechanisms of resistance to these bacteriocins and cross-resistance against antibiotics must be examined before application to ensure their safe use. Here, in the model bacterium Lactococcus lactis, we studied the development of resistance to selected aureocin A53- and enterocin L50-like bacteriocins and its correlation with antibiotics. First, to generate spontaneous resistant mutants, L.lactis was exposed to bacteriocin BHT-B. Sequencing of their genomes revealed single nucleotide polymorphisms (SNPs) in the dgkB (yecE) and dxsA genes encoding diacylglycerol kinase and 1-deoxy-D-xylulose 5-phosphate synthase, respectively. Then, selected mutants underwent susceptibility tests with a wide array of bacteriocins and antibiotics. The highest alterations in the sensitivity of studied mutants were seen in the presence of cytoplasmic membrane targeting bacteriocins (K411, Ent7, EntL50, WelM, SalC, nisin) and antibiotics (daptomycin and gramicidin) as well as lipid II cycle-blocking bacteriocins (nisin and Lcn972) and antibiotics (bacitracin). Interestingly, decreased via the SNPs accumulation sensitivity to membrane-active bacteriocins and antibiotics resulted in the concurrently increased vulnerability to bacitracin, carbenicillin, or chlortetracycline. It is suspected that SNPs may result in alterations to the efficiency of the nascent enzymes rather than a total loss of their function as neither deletion nor overexpression of dxsA restored the phenotype observed in spontaneous mutants.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1045
Author(s):  
Michał Burdukiewicz ◽  
Katarzyna Sidorczuk ◽  
Dominik Rafacz ◽  
Filip Pietluch ◽  
Mateusz Bąkała ◽  
...  

Antimicrobial peptides (AMPs) constitute a diverse group of bioactive molecules that provide multicellular organisms with protection against microorganisms, and microorganisms with weaponry for competition. Some AMPs can target cancer cells; thus, they are called anticancer peptides (ACPs). Due to their small size, positive charge, hydrophobicity and amphipathicity, AMPs and ACPs interact with negatively charged components of biological membranes. AMPs preferentially permeabilize microbial membranes, but ACPs additionally target mitochondrial and plasma membranes of cancer cells. The preference towards mitochondrial membranes is explained by their membrane potential, membrane composition resulting from α-proteobacterial origin and the fact that mitochondrial targeting signals could have evolved from AMPs. Taking into account the therapeutic potential of ACPs and millions of deaths due to cancer annually, it is of vital importance to find new cationic peptides that selectively destroy cancer cells. Therefore, to reduce the costs of experimental research, we have created a robust computational tool, CancerGram, that uses n-grams and random forests for predicting ACPs. Compared to other ACP classifiers, CancerGram is the first three-class model that effectively classifies peptides into: ACPs, AMPs and non-ACPs/non-AMPs, with AU1U amounting to 0.89 and a Kappa statistic of 0.65. CancerGram is available as a web server and R package on GitHub.


PLoS ONE ◽  
2013 ◽  
Vol 8 (8) ◽  
pp. e71687 ◽  
Author(s):  
Benjamin Zeitler ◽  
Areli Herrera Diaz ◽  
Alexandra Dangel ◽  
Martha Thellmann ◽  
Helge Meyer ◽  
...  

2008 ◽  
Vol 46 (1) ◽  
pp. 273-301 ◽  
Author(s):  
Jose F. Marcos ◽  
Alberto Muñoz ◽  
Enrique Pérez-Payá ◽  
Santosh Misra ◽  
Belén López-García

2006 ◽  
Vol 188 (1) ◽  
pp. 1-9 ◽  
Author(s):  
L Marenah ◽  
P R Flatt ◽  
D F Orr ◽  
C Shaw ◽  
Y H A Abdel-Wahab

Skin secretions of Rana saharica were evaluated for the isolation and characterisation of novel insulinotropic peptides. Crude secretions obtained from young adult frogs by mild electrical stimulation of the dorsal skin surface were purified by reverse phase HPLC yielding 80 fractions. In acute 20-min incubations with glucose responsive BRIN-BD11 cells, fractions 36–43, 46–54 and 57–63 significantly stimulated insulin release by 2- to 8-fold compared with 5.6 mM glucose alone. Pooled fractions in the latter two bands were rechromatographed to reveal 9 homogenous peaks, which elicited significant 1.3- to 3.5-fold increases in insulin release (P < 0.05). Structural analysis of the most potent non-toxic peptides was performed by mass spectrometry and automated Edman degradation. This revealed four major insulin-releasing peaks with molecular masses of 2676.9 Da, 3519.3 Da, 4920.4 Da and 4801.2 Da respectively. These peptides were found to be identical to brevinin-1E, brevinin-2EC, esculentin-1 and esculentin-1B, which belong to the group of antimicrobial peptides isolated from skin secretions of various Rana frog species. Preliminary studies on the mechanism underlying the insulinotropic actions of esculentins-1 and -1B suggested possible involvement of both cyclic AMP–protein kinase A and –C-dependent G-protein sensitive pathways. These data indicate that the skin secretions of Rana saharica frogs contain bioactive molecules with significant insulin-releasing activity. Relatives of the brevinin/esculentin peptide family merit further investigation as novel insulin secretagogues.


2021 ◽  
Vol 12 ◽  
Author(s):  
Eric H. -L. Chen ◽  
Cheng-Wei Weng ◽  
Yi-Min Li ◽  
Ming-Chin Wu ◽  
Chien-Chih Yang ◽  
...  

Plant diseases are important issues in agriculture, and the development of effective and environment-friendly means of disease control is crucial and highly desired. Antimicrobial peptides (AMPs) are known as potential alternatives to chemical pesticides because of their potent broad-spectrum antimicrobial activity and because they have no risk, or have only a low risk, of developing chemical-resistant pathogens. In this study, we designed a series of amphipathic helical peptides with different spatial distributions of positive charges and found that the peptides that had a special sequence pattern “BBHBBHHBBH” (“B” for basic residue and “H” for hydrophobic residue) displayed excellent bactericidal and fungicidal activities in a wide range of economically important plant pathogens. The peptides with higher helical propensity had lower antimicrobial activity. When we modified the peptides with a long acyl chain at their N-terminus, their plant protection effect improved. Our application of the fatty acyl-modified peptides on the leaves of tomato and Arabidopsis plants lessened the infection caused by Pectobacterium carotovorum subsp. carotovorum and Botrytis cinerea. Our study provides important insights on the development of more potent novel AMPs for plant protection.


2017 ◽  
Vol 4 (2) ◽  
pp. 57 ◽  
Author(s):  
Rita Harni ◽  
Widi Amaria ◽  
Syafaruddin Syafaruddin ◽  
Anis Herliyati Mahsunah

<p class="Default">Trichoderma<em> spp. is a beneficial microbe that produces bioactive molecules (secondary metabolites) containing antibiotics, enzymes, hormones, as well as toxins, which play an important role in plant diseases biocontrol. The research aimed to determine the potential of secondary metabolite </em>Trichoderma<em> spp. to control vascular streak dieback disease in cacao seedlings. The research was conducted in Plant Protection Laboratory of Indonesian Industrial and Beverage Crops Research Institute (IIBCRI) and farmers' garden in Balubus village, Lima Puluh Kota, West Sumatera, from April to August 2016. The research used a complete randomized design of 7 treatments using 5 replications, each treatment with 5 plants. The treatment was a secondary metabolite of </em>T. virens<em> LP1, </em>T. hamatum<em> LP2, </em>T. amazonicum<em> LP3, </em>T. atroviride<em> JB2, and </em>T. viride<em> PRD, control (no secondary metabolite), and chemical fungicide as comparison. The 3 months old cacao seedlings were treated with secondary metabolite of </em>Trichoderma<em> spp. by spraying the metabolite suspension throughout the leaf surface. The secondary metabolite applied once a week for 6 times. </em>C. theobromae <em>inoculation was conducted naturally by placing cacao seedlings under a cacao tree infected with VSD. Observations were incubation period, VSD intensity, and growth of cacao seedlings. The results showed that secondary metabolites potentially utilized for controlling VSD in cacao seedlings. The most potential secondary metabolites are </em>T. amazonicum<em> LP3 and </em>T. virens<em> LP1 with respective disease suppression up to 81.8% and 63.2% or higher than and equivalent chemical fungicide (63.6%), and can increase plants height, number of leaves, and girth diameter.</em></p>


Author(s):  
E. Istomina ◽  
T. Korostyleva ◽  
L. Scherbakova ◽  
T. Odintsova

Analysis of the relationship between the structure and function of hevein-like antimicrobial WAMP peptides will serve as a theoretical basis for the development of new biopesticides and drug prototypes based on simpler WAMP derivatives.


Sign in / Sign up

Export Citation Format

Share Document