Coconut Oil Plasticizer as a Replacement of Petroleum Oil in Natural Rubber Compound: Physical and Mechanical Properties

Author(s):  
Farhana Othman ◽  
Nismahasyirah Alang Ismail
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chatree Homkhiew ◽  
Surasit Rawangwong ◽  
Worapong Boonchouytan ◽  
Wiriya Thongruang ◽  
Thanate Ratanawilai

The aim of this work is to investigate the effects of rubberwood sawdust (RWS) size and content as well as the ratio of natural rubber (NR)/high-density polyethylene (HDPE) blend on properties of RWS reinforced thermoplastic natural rubber (TPNR) composites. The addition of RWS about 30–50 wt% improved the modulus of the rupture and tensile strength of TPNR composites blending with NR/HDPE ratios of 60/40 and 50/50. TPNR composites reinforced with RWS 80 mesh yielded better tensile strength and modulus of rupture than the composites with RWS 40 mesh. The TPNR/RWS composites with larger HDPE content gave higher tensile, flexural, and Shore hardness properties and thermal stability as well as lower water absorption. The TPNR/RWS composites with larger plastic content were therefore suggested for applications requiring high performance of thermal, physical, and mechanical properties.


2018 ◽  
Author(s):  
Nurul Wahidah Zahari ◽  
Ahmad Faiza Mohd ◽  
Azemi Samsuri ◽  
Dzaraini Kamarun

2020 ◽  
Vol 244 ◽  
pp. 118319 ◽  
Author(s):  
Gampanart Sukmak ◽  
Patimapon Sukmak ◽  
Suksun Horpibulsuk ◽  
Teerasak Yaowarat ◽  
Kittipong Kunchariyakun ◽  
...  

2017 ◽  
Vol 744 ◽  
pp. 282-287
Author(s):  
Sarawut Prasertsri ◽  
Sansanee Srichan

This research aimed to develop the formulation of natural rubber filled with carbon black, silica and calcium carbonate for rubber calf nipple application. The reverse engineering was performed on the calf nipple product to analyze the rubber type and component by using Soxhlet extraction, thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) techniques. Furthermore, mechanical properties were examined to act as benchmark for the rubber compound design. The results showed that rubber component in the nipple product was natural rubber, whereas two filler types revealed as carbon black and calcium carbonate with 10 and 35 of the total weight. In addition, rubber nipple showed the hardness of 46±1 Shore A and tensile strength of 5.3±0.60 MPa. From the investigation of the properties of developed rubber compounds in this work, it was found that the mechanical properties depended on type and content of filler. The required mechanical properties of vulcanizates were achieved at 20 phr of carbon black (N330), 20 phr of silica and 120 phr of calcium carbonate.


2015 ◽  
Vol 1109 ◽  
pp. 195-199 ◽  
Author(s):  
Abd Aziz Azira ◽  
Dayang Habibah Abangismawi I. Hassim ◽  
D. Verasamy ◽  
Abu Bakar Suriani ◽  
M. Rusop

In order to achieve improvements in the performance of rubber materials, the development of carbon nanotube (CNT)-reinforced rubber composites was attempted. The CNT/epoxidised natural rubber (ENR) nanocomposite was prepared through latex technology. Physical and mechanical properties of the CNT/ENR nanocomposites were characterized in contrast to the carbon black (CB)/ENR composite. The dispersion of the CNTs in the rubber matrix and interfacial bonding between them were rather good; monitored transmission electron microscopy and scanning electron microscopy. The mechanical properties of the CNT-reinforced ENR showed a considerable increase compared to the neat ENR and traditional CB/ENR composite. The storage modulus of the CNT/ENR nanocomposites greatly exceeds that of neat ENR and CB/ENR composites and a maximum conductivity of about 1 S m-1 can be achieved. The approach presented can be adapted to other CNT/polymer latex systems.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2020 ◽  
Author(s):  
Do Young Kim ◽  
Jae Woo Park ◽  
Dong Yun Lee ◽  
Kwan Ho Seo

The extreme elasticity and reversible deformability of rubber, which is one of the most versatile polymers in modern society, is dependent on several factors, including the processing conditions, curing system, and types of additives used. Since the rubber’s mechanical properties are influenced by the existing structural crosslinks, their correlation with the crosslink characteristics of rubber was investigated using the equilibrium swelling theory of the Flory–Rehner equation and the rubber–filler interaction theory of the Kraus equation. Herein, we examined whether the accelerator and reinforcement agent quantitatively contributed to chemical cross-linkages and rubber–filler interaction. In conclusion, the accelerator content supported the chemically crosslinked structures of the monosulfides and the disulfides in natural rubber (NR). Additionally, these results demonstrated that the mechanical properties and the thermal resistance of NR were dependent on the crosslink characteristics. The findings of this study provide an insight into the development and application of NR products for the mechanical optimization of rubber-based products.


2015 ◽  
Vol 16 ◽  
pp. 258-264 ◽  
Author(s):  
Ika Maria Ulfah ◽  
Riastuti Fidyaningsih ◽  
Sri Rahayu ◽  
Diah Ayu Fitriani ◽  
Dita Adi Saputra ◽  
...  

2011 ◽  
Vol 239-242 ◽  
pp. 1601-1604 ◽  
Author(s):  
Xiao Xue Liao ◽  
Hai Sheng Tan ◽  
Ming Chao Luo ◽  
Bing Tang ◽  
Shuang Quan Liao ◽  
...  

The effects of the ratios of natural rubber latex (NRL)and chloroprene rubber latex(CRL) and the type of compatibilizer on physical and mechanical properties of latex film were researched.The oil resistance of vulcanized latex film was tested. The compatibility of the latex blends was also analyzed by TG/DTG method.The results showed that properties of latex film were best when ratio of NRL/CRL was 75/25. As the CRL content increased, oil resistance of latex film was improved. Epoxidized natural rubber latex improved compatibility of NRL and CRL blends.


2013 ◽  
Vol 86 (2) ◽  
pp. 205-217 ◽  
Author(s):  
Hedayatollah Sadeghi Ghari ◽  
Zahra Shakouri

ABSTRACT Research was undertaken on natural rubber (NR) nanocomposites with organoclays. A double-network (DN) structure is formed when a partially cross-linked elastomer is further cross-linked during a state of strain. Two methods were used in the preparation of NR/organoclay nanocomposites: the ordinary method (single-network NR nanocomposite) and double-networked NR (DN-NR) nanocomposites. The single-networked NR nanocomposites were used for comparison. The effects of organoclay (5 phr) with a different extension ratio on curing characteristics, mechanical properties, hardness, swelling behavior, and morphology of single- and double-networked NR nanocomposites were studied. The results showed that double-networked NR nanocomposites exhibited higher physical and mechanical properties. The tensile strength of DN-NR nanocomposites increased up to 33 MPa (more than four times greater than that of pure NR) and then decreased with an increasing extension ratio. Modulus and hardness continuously increased with an increased extension ratio. The microstructure of the NR/organoclay systems was studied by X-ray diffraction and field emission scanning electron microscopy. The effects of different extension ratios on the dispersion of organoclay layers in the nanocomposites were investigated. Generally, results showed that the optimized extension ratio in DN nanocomposites was equal (or about or around) to α= 2.


Sign in / Sign up

Export Citation Format

Share Document