The mechanical properties of engineered cementitious composites containing limestone powder replaced by microsilica sand

2013 ◽  
Vol 40 (2) ◽  
pp. 151-157 ◽  
Author(s):  
Kazim Turk ◽  
Serhat Demirhan

In this study, an experimental program is conducted to understand the effect of the limestone powder (LSP) content replaced by silica sand on the composite properties. For this purpose, five different engineered cementitious composite (ECC) mixtures were adopted: ECC mixture with only silica sand (SS) for control purposes and four ECC mixtures in which SS is partially replaced by four levels of replacements (25%, 50%, 75%, and 100% by weight of total SS) of LSP. The properties of ECC mixtures produced were investigated for the ages of 3, 28, and 90 days. It was concluded that the mechanical properties of the ECC mixtures with LSP were in general higher than the reference mixture with only SS for all curing ages. Increase in the LSP content had a positive effect on the performance of the compressive strength, fracture toughness, and flexural strength at the ages of 3 and 28 days while this was not valid at the age of 90 days when compared to the reference mixture. Also, the ductility of the ECC beams strongly depends on the LSP content and specimen age.

ICSDEMS 2019 ◽  
2020 ◽  
pp. 259-264
Author(s):  
Nurmazidah Abdullah Zawawi ◽  
Chai Lian Oh ◽  
Siong Wee Lee ◽  
Mohd Raizamzamani Md Zain ◽  
Norrul Azmi Yahya

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jiangtao Yu ◽  
Wenfang Weng ◽  
Kequan Yu

The influence of different cooling regimes (quenching in water and cooling in air) on the residual mechanical properties of engineered cementitious composite (ECC) subjected to high temperature up to 800°C was discussed in this paper. The ECC specimens are exposed to 100, 200, 400, 600, and 800°C with the unheated specimens for reference. Different cooling regimens had a significant influence on the mechanical properties of postfire ECC specimens. The microstructural characterization was examined before and after exposure to fire deterioration by using scanning electron microscopy (SEM). Results from the microtest well explained the mechanical properties variation of postfire specimens.


2013 ◽  
Vol 405-408 ◽  
pp. 2889-2892 ◽  
Author(s):  
Zhi Qin Zhao ◽  
Ren Juan Sun ◽  
Zi Qiang Feng ◽  
Shan Shan Wei ◽  
Da Wei Huang

Engineered Cementitious Composite (ECC) is a fiber reinforced cement based composite material, which systematically designed on the basis of micromechanics and engineered to achieve high ductility under tensile and shear load. The article introduced the development of ECC as advanced construction material, shown different mechanical properties of ECC, tensile strength, compressive strength, bending strength, shear strength. And in light of recent and future full-scale field applications of ECC were also summarized.


2021 ◽  
Vol 8 ◽  
Author(s):  
Mingzhang Lan ◽  
Jian Zhou ◽  
Mingfeng Xu

Engineered cementitious composite (ECC) is a group of ultra-ductile fibre-reinforced cementitious composites, characterised by high ductility and moderate content of short discontinuous fibre. The unique tensile strain-hardening behaviour of ECC results from a deliberate design based on the understanding of micromechanics between fibre, matrix, and fibre–matrix interface. To investigate the effect of fibre properties on the tensile behaviour of ECCs is, therefore, the key to understanding the composite mechanical behaviour of ECCs. This paper presents a study on the fibre-bridging behaviour and composite mechanical properties of ECCs with three types of fibres, including oil-coated polyvinyl alcohol (PVA) fibre, untreated PVA fibre, and polypropylene (PP) fibre. The experimental result reveals that various fibres with different properties result in difference in the fibre-bridging behaviour and composite mechanical properties of ECCs. The difference in the composite mechanical properties of ECCs with different fibres was interpreted by analysing the fibre-bridging behaviour.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2609
Author(s):  
Zhiqing Zhu ◽  
Guojin Tan ◽  
Weiguang Zhang ◽  
Chunli Wu

Engineered cementitious composite (ECC) is a potential cement-based material with the abilities of large deformation and crack width control. However, ECC is difficult to popularize in many developing countries because the costs of silica sand and polyvinyl alcohol (PVA) fiber with a surface coating are too high for practical engineering. Therefore, we proposed an economical ECC with superfine river sand and polypropylene (PP) fiber (SSPP-ECC) to replace PVA fiber and silica sand. The SSPP-ECC proposed in this paper is a sustainable material using local material ingredients, which has considerable adaptability for large-scale engineering applications. The 16 groups of specimens were prepared through a factorial design method, curing for four-point bending tests. The bending strength, deflection, flexural modulus of elasticity, and crack width were measured and calculated during the test. The factor analysis of the test results shows that the contents of fiber and fly ash had significant effects on the ductility of SSPP-ECC with an extra combined effect at the same time, and a response surface model with high accuracy was fitted to predict the yield length of SSPP-ECC. The ductility of SSPP-ECC was positively related to its crack-control ability and it was shown that the crack width of SSPP-ECC increased significantly with a high content of superfine sand. This paper proposed a reasonable way to utilize superfine sand and provided the mix proportion of SSPP-ECC with characteristics of deformation hardening and multi-cracking, which may cater to the demands of many concrete components on ductility and crack resistance.


2015 ◽  
Vol 42 (3) ◽  
pp. 164-177 ◽  
Author(s):  
Bora Gencturk ◽  
Farshid Hosseini

The behavior of reinforced concrete (RC) and reinforced engineered cementitious composites (ECC) was comparatively investigated at the component and system levels through a small-scale (1/8 scale factor) experimental program. The logistical and financial advantages of small-scale testing were utilized to investigate a range of parameters, including the effect of reinforcement ratio and material properties, on the response of reinforced concrete and reinforced ECC structures. The procedures pertaining to material preparation, specimen construction, and input motion development that were critical for enhancing the similarity between the scales are provided. Engineered cementitious composite mixtures with different cost and sustainability indices were evaluated. Under cyclic loading, the stiffness, strength, ductility, and energy absorption capacity of columns made of different ECC mixtures were found to be 110, 65, 45, and 100% higher, respectively, than those of the RC columns. The system level investigation through hybrid simulation showed that the ECC structures sustain less deformation under earthquake excitation due to high energy absorption capacity of the material. The differences in cost, sustainability, and structural performance of different ECC mixtures suggest that a careful selection of materials is required for optimal performance.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3796
Author(s):  
Qiang Du ◽  
Changlu Cai ◽  
Jing Lv ◽  
Jiao Wu ◽  
Ting Pan ◽  
...  

This study investigated fundamental mechanical properties of a basalt fiber reinforced engineered cementitious composite (BF-ECC) with different volume fractions of basalt fiber (BF), water–binder ratio (W/B) and fly ash (FA) content. The compressive strength, splitting tensile strength, flexural strength and static modulus of BF-ECC were studied at 3, 28 and 56 days, respectively, to explore their development along the ages. Furthermore, the scanning electron microscopy (SEM) analysis was conducted to evaluate the microstructure of BF-ECC. Experiment results demonstrated that bond quality between the BF and the matrix is good, which leads to a significant increase in the flexural strength and splitting tensile strength. The pozzolanic effect of FA obviously improved the splitting tensile and flexural strength of BF-ECC after 56 days of curing, and the appropriate content of the FA content in the BF-ECC ranges from 50% to 60%.


Sign in / Sign up

Export Citation Format

Share Document