Investigation on Effect of Fly Ash Volume Percentage on Microstructure and Microhardness of AA7075—Fly Ash Surface Composites via FSP

Author(s):  
Namdev Ashok Patil ◽  
Ng Zhongyan ◽  
Srinivasa Rao Pedapati ◽  
Othman Bin Mamat

The present study aims to investigate the Aluminium oxide and Zirconium diboride particles reinforced aluminum surface composites fabricated using Friction Stir Processing (FSP). Al-6063 was used as base-metal and Aluminium oxide and Zirconium diboride were used as reinforcement media. Al 6063 is used for architectural fabrication; window and door frames, pipe and tubing, and aluminium furniture Tensile strength specimens were prepared as per ASTM –E8 Standard. Tensile strength were found using UTM. Then it is found that that the tensile strength of the composite decreases as the volume percentage of the particles added for the reinforcement increases in the composites.


Author(s):  
K. Suganeswaran ◽  
R. Parameshwaran ◽  
R. Sathiskumar ◽  
T. Ram Prabhu ◽  
N. Nithyavathy

The novel friction stir technology is adopted in modern automotive industries to meet the desired properties like hardness, impact toughness and tribological behaviour over the conventional techniques like stir casting, compo casting, squeeze casting, electroplating and infiltration methods. AA7075 surface composites fabricated with different volume fractions of fly ash and emery particles is said to enhance the aforementioned properties. The composites are processed through friction stir process (rotational speed −1200 rpm, transverse speed – 56 mm/min, tool tilt angle – 2 °). During characterization, the Microstructural examination of surface composites depicts fine and homogenous distribution of reinforcements in the friction stir process region owing to severe plastic deformation and dynamic recrystallization process. Substantially, good interface is formed between the reinforcement particulates and base substrate. Inclusion of Fe3O4, Al2O3 and SiO2 constituents through fly ash and emery reinforcements associated with the homogenous dispersion strengthening mechanism favours for the superior hardness of surface hybrid composite specimen 50E50FA. Decremented grain size and load bearing capacity of the reinforcements is beneficial for the crack propagation resistance that enhances the impact toughness behaviour (17.4 J/cm2) of the same specimen. Wear rate of the specimens are evaluated through pin on disc tribometer. The decrease in the wear rate of hard specimen 50E50FA is observed due to the reduced contact area between its surface and counter disc. The morphology of worn specimens using SEM analysis shows the combined abrasive and adhesive wear as the worn mechanism.


2011 ◽  
Vol 471-472 ◽  
pp. 26-30 ◽  
Author(s):  
R. Satheesh Raja ◽  
K. Manisekar ◽  
V. Manikandan

Fibre reinforced polymer composites play an incredible role in almost all spheres of day to day life and the field of carbon composites is one of the prime research area in recent decade. Polymers are mostly reinforced with fibre or fillers to obtain better mechanical properties. The properties of the polymer composites can be improved largely by varying the type of filler/fibre materials and its volume percentage. Composites properties depend on the size, shape and other physical properties of the reinforcements. A relative easy way to improve the mechanical properties of a polymer is the addition of filler materials. In all particulate filled systems, the adhesion between the matrix and filler plays a significant role in determining the key properties such as strength and toughness. The mechanical properties of composites are also influenced by the filler’s nature, size and distribution profile, aspect ratio, volume fraction, the intrinsic adhesion between the surfaces of filler and polymer. In this paper, the effect of filler material on mechanical properties of E-Glass fibre reinforced polymer has been studied out by varying filler materials. For these study three different types of specimens were prepared, viz FRP without filler material, the FRP with 10 volume percentages of carbon black and the FRP with 10 volume percentage of Fly ash as filler material. The polyester composites were fabricated by hand-layup method. Mechanical properties of the specimens are analyzed using computerized Universal Testing Machine as per ASTM D 638 standards. The resulting behavioral patterns of the FRP with filler material are listed and compared to those of the FRP without filler material. Mechanical properties such as ultimate tensile strength, percentage of elongation, yield strength, Poisson’s ratio and percentage reduction in area were found out.


Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 541 ◽  
Author(s):  
Namdev Ashok Patil ◽  
Srinivasa Rao Pedapati ◽  
Othman Bin Mamat ◽  
Abdul Munir Hidayat Syah Lubis

Friction stir processing (FSP) has emerged as a valuable technique in the surface metal matrix composite fabrication field. In this process, solid-state processing mostly avoids the formation of detrimental phases inside composites. Despite having a high specific strength, further extensive Al alloy applications are limited due to their poor surface properties. A hybrid reinforcement approach can be used to improve surface properties. In this study, industrial waste fly ash material is mixed with hard SiC ceramic particles. The main focus of this research is to improve wear resistance under dry sliding conditions and microhardness of aluminum 7075-T651 by dispersion of silicon carbide-fly ash (SiC/fly ash) powder in a base alloy by FSP. The parameters used for this investigation are: tool rotation rpm (500, 1000 and 1500), the tool traverse mm/min (20, 30 and 40), the reinforcement’s hybrid ratio HR (60:40, 75:25 and 90:10) and the volume percentage vol.% (4%, 8% and 12%). The influence of these parameters on the resultant composite’s microstructure, dry sliding wear rate and micro-hardness was studied. By using response surface methodology (RSM), desirable ranges of process parameters for lower wear rate and higher microhardness were obtained. The interaction effect of SiC/fly ash volume percentage and hybrid ratio had the most influential effect on the wear rates, as well as microhardness of composites. Moreover, microhardness increased with an increase in the volume percentage of SiC/fly ash powders towards high SiC content in hybrid ratio. Interestingly, among stirring parameters, tool traverse speed was found to be more influential than tool rotational speed. The minimum wear rate was observed for the Run 20 sample (w: 1000 rpm, v: 40 mm/min, HR: 75:25, vol.%: 8). A maximum microhardness of 241.20 HV was achieved for Run 15 (w: 500 rpm, v: 40 mm/min, HR: 90:10, vol.%: 12) sample. Mainly, reinforcement distribution—in accordance with the stirring action generated by the tool—had a major role in controlling the surface properties of the resultant composites.


2006 ◽  
Vol 1 (4) ◽  
pp. 129-140
Author(s):  
Mark Reiner ◽  
Kevin Rens ◽  
Anu Ramaswami

Although fly-ash as a partial replacement for cement has been utilized for many years, its use has been almost exclusively used in low volume percentages such as 10% or 20% cement replacement. This paper looks at high volume percentage replacements from 40% to 70%. A mini-mix study revealed that 50% and 60% cement replacement percentages were the best candidates for full scale testing. The environmental benefits included a 25% reduction in smog, human health, and fossil fuel reduction compared to the same element built with 100% Portland cement mix. The economic benefits included a 15% capital cost reduction and a 20% life-cycle cost reduction when compared with a 100% Portland cement mix. Full scale testing included a complete mix design in addition to the construction of four concrete infrastructure products. The products built included an alley panel and curb and gutter sections in the City and county of Denver, a precast manhole and lid, and a twin tee prestressed girder. Although cement products are just one of many materials used in the construction of the built environment, its production has a large impact on the environment. Lowering the embodied energy of multiple types of construction materials will have a significant effect on sustainable urban development. Symbiotic recycling of waste material, such as fly ash in concrete, back into the built environment can help reduce materials on the input side and pollution on the output side of the bulk material flow of an urban city.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1310
Author(s):  
Meor Ahmad Faris ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Ratnasamy Muniandy ◽  
Mohammad Firdaus Abu Hashim ◽  
Katarzyna Błoch ◽  
...  

Geopolymer concrete has the potential to replace ordinary Portland cement which can reduce carbon dioxide emission to the environment. The addition of different amounts of steel fibers, as well as different types of end-shape fibers, could alter the performance of geopolymer concrete. The source of aluminosilicate (fly ash) used in the production of geopolymer concrete may lead to a different result. This study focuses on the comparison between Malaysian fly ash geopolymer concrete with the addition of hooked steel fibers and geopolymer concrete with the addition of straight-end steel fibers to the physical and mechanical properties. Malaysian fly ash was first characterized by X-ray fluorescence (XRF) to identify the chemical composition. The sample of steel fiber reinforced geopolymer concrete was produced by mixing fly ash, alkali activators, aggregates, and specific amounts of hook or straight steel fibers. The steel fibers addition for both types of fibers are 0%, 0.5%, 1.0%, 1.5%, and 2.0% by volume percentage. The samples were cured at room temperature. The physical properties (slump, density, and water absorption) of reinforced geopolymer concrete were studied. Meanwhile, a mechanical performance which is compressive, as well as the flexural strength was studied. The results show that the pattern in physical properties of geopolymer concrete for both types of fibers addition is almost similar where the slump is decreased with density and water absorption is increased with the increasing amount of fibers addition. However, the addition of hook steel fiber to the geopolymer concrete produced a lower slump than the addition of straight steel fibers. Meanwhile, the addition of hook steel fiber to the geopolymer concrete shows a higher density and water absorption compared to the sample with the addition of straight steel fibers. However, the difference is not significant. Besides, samples with the addition of hook steel fibers give better performance for compressive and flexural strength compared to the samples with the addition of straight steel fibers where the highest is at 1.0% of fibers addition.


Author(s):  
L. L. Sutter ◽  
G. R. Dewey ◽  
J. F. Sandell

Municipal waste combustion typically involves both energy recovery as well as volume reduction of municipal solid waste prior to landfilling. However, due to environmental concerns, municipal waste combustion (MWC) has not been a widely accepted practice. A primary concern is the leaching behavior of MWC ash when it is stored in a landfill. The ash consists of a finely divided fly ash fraction (10% by volume) and a coarser bottom ash (90% by volume). Typically, MWC fly ash fails tests used to evaluate leaching behavior due to high amounts of soluble lead and cadmium species. The focus of this study was to identify specific lead bearing phases in MWC fly ash. Detailed information regarding lead speciation is necessary to completely understand the leaching behavior of MWC ash.


1997 ◽  
Vol 9 (6) ◽  
pp. 541-565 ◽  
Author(s):  
Cheryl R. Killingsworth ◽  
Francesca Alessandrini ◽  
G. G. Krishna Murthy ◽  
Paul J. Catalano ◽  
Joseph D. Paulauskis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document