Effects of ?-guanidinopropionic acid-feeding on the patterns of myosin isoforms in rat fast-twitch muscle

1995 ◽  
Vol 430 (3) ◽  
pp. 389-393 ◽  
Author(s):  
Jian -Ming Ren ◽  
Yoshinobu Ohira ◽  
John O. Holloszy ◽  
Nina H�m�l�inen ◽  
Irmtrub Traub ◽  
...  
2011 ◽  
Vol 301 (3) ◽  
pp. R783-R790 ◽  
Author(s):  
Bradley J. Behnke ◽  
Robert B. Armstrong ◽  
Michael D. Delp

The influence of the sympathetic nervous system (SNS) upon vascular resistance is more profound in muscles comprised predominately of low-oxidative type IIB vs. high-oxidative type I fiber types. However, within muscles containing high-oxidative type IIA and IIX fibers, the role of the SNS on vasomotor tone is not well established. The purpose of this study was to examine the influence of sympathetic neural vasoconstrictor tone in muscles composed of different fiber types. In adult male rats, blood flow to the red and white portions of the gastrocnemius (GastRed and GastWhite, respectively) and the soleus muscle was measured pre- and postdenervation. Resistance arterioles from these muscles were removed, and dose responses to α1-phenylephrine or α2-clonidine adrenoreceptor agonists were determined with and without the vascular endothelium. Denervation resulted in a 2.7-fold increase in blood flow to the soleus and GastRed and an 8.7-fold increase in flow to the GastWhite. In isolated arterioles, α2-mediated vasoconstriction was greatest in GastWhite (∼50%) and less in GastRed (∼31%) and soleus (∼17%); differences among arterioles were abolished with the removal of the endothelium. There was greater sensitivity to α1-mediated vasoconstriction in the GastWhite and GastRed vs. the soleus, which was independent of whether the endothelium was present. These data indicate that 1) control of vascular resistance by the SNS in high-oxidative, fast-twitch muscle is intermediate to that of low-oxidative, fast-twitch and high-oxidative, slow-twitch muscles; and 2) the ability of the SNS to control blood flow to low-oxidative type IIB muscle appears to be mediated through postsynaptic α1- and α2-adrenoreceptors on the vascular smooth muscle.


2018 ◽  
Vol Volume 13 ◽  
pp. 125-131 ◽  
Author(s):  
Mariko Matsubara ◽  
Haruka Tohara ◽  
Koji Hara ◽  
Hiromichi Shinozaki ◽  
Yasuhiro Yamazaki ◽  
...  

Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 243 ◽  
Author(s):  
Manting Ma ◽  
Bolin Cai ◽  
Liang Jiang ◽  
Bahareldin Ali Abdalla ◽  
Zhenhui Li ◽  
...  

Emerging studies indicate important roles for non-coding RNAs (ncRNAs) as essential regulators in myogenesis, but relatively less is known about their function. In our previous study, we found that lncRNA-Six1 can regulate Six1 in cis to participate in myogenesis. Here, we studied a microRNA (miRNA) that is specifically expressed in chickens (miR-1611). Interestingly, miR-1611 was found to contain potential binding sites for both lncRNA-Six1 and Six1, and it can interact with lncRNA-Six1 to regulate Six1 expression. Overexpression of miR-1611 represses the proliferation and differentiation of myoblasts. Moreover, miR-1611 is highly expressed in slow-twitch fibers, and it drives the transformation of fast-twitch muscle fibers to slow-twitch muscle fibers. Together, these data demonstrate that miR-1611 can mediate the regulation of Six1 by lncRNA-Six1, thereby affecting proliferation and differentiation of myoblasts and transformation of muscle fiber types.


1988 ◽  
Vol 254 (5) ◽  
pp. C651-C656 ◽  
Author(s):  
P. Babij ◽  
F. W. Booth

Specific complementary DNA (cDNA) hybridization probes were used to estimate the levels of alpha-actin and cytochrome c mRNAs and also 18S rRNA in three models of skeletal muscle atrophy. After 7 days of hindlimb suspension, or immobilization, or denervation, protein content decreased 26-32% in all muscles studied except suspended fast-twitch muscle, which lost only half as much protein. alpha-Actin mRNA content decreased 51-66% and cytochrome c mRNA content decreased 42-61% in slow- and fast-twitch muscles in all three models of atrophy. However, total RNA content did not show similar directional changes; RNA content decreased 27-44% in suspended and immobilized muscle but was unchanged in denervated fast-twitch muscle. The results were interpreted to suggest that loss of weight-bearing function of skeletal muscle is a major factor affecting the levels of alpha-actin and cytochrome c mRNAs during muscle atrophy.


1987 ◽  
Vol 63 (5) ◽  
pp. 2101-2110 ◽  
Author(s):  
R. W. Tsika ◽  
R. E. Herrick ◽  
K. M. Baldwin

Three adult skeletal muscle sarcomeric myosin heavy chain (MHC) genes have been identified in the rat, suggesting that the expressed native myosin isoforms can be differentiated, in part, on the basis of their MHC composition. This study was undertaken to ascertain whether the five major native isomyosins [3 fast (Fm1, Fm2, Fm3), 1 slow (Sm), and 1 intermediate (Im)], typically expressed in the spectrum of adult rat skeletal muscles comprising the hindlimb, could be further differentiated on the basis of their MHC profiles in addition to their light chain composition. Results show that in muscles comprised exclusively of fast-twitch glycolytic (FG) fibers and consisting of Fm1, Fm2, and Fm3, such as the tensor fasciae latae, only one MHC, designated as fast type IIb, could be resolved. In soleus muscle, comprised of both slow-twitch oxidative and fast-twitch oxidative-glycolytic fibers and expressing Sm and Im, two MHC bands were resolved and designated as slow/cardiac beta-MHC and fast type IIa MHC. In muscles expressing a mixture of all three fiber types and a full complement of isomyosins, as seen in the plantaris, the MHC could be resolved into three bands. Light chain profiles were characterized for each muscle type, as well as for the purified isomyosins. These data suggest that Im (IIa) consists of a mixture of fast and slow light chains, whereas Fm (IIb) and Sm (beta) isoforms consist solely of fast- and slow-type light chains, respectively. Polypeptide mapping of denatured myosin extracted from muscles expressing contrasting isoform phenotypes suggests differences in the MHC primary structure between slow, intermediate, and fast myosin isotypes. These findings demonstrate that 1) Fm, Im, and Sm isoforms are differentiated on the bases of both their heavy and light chain components and 2) each isomyosin is distributed in a characteristic fashion among rat hindlimb skeletal muscles. Furthermore, these data suggest that the ratio of isomyosins in a given muscle or muscle region is of physiological importance to the function of that muscle during muscular activity.


1979 ◽  
Vol 36 (1) ◽  
pp. 137-154
Author(s):  
D.E. Ashhurst ◽  
G. Vrbova

The anterior latissimus dorsi (ALD) muscle of chickens is a slow tonic muscle, while the posterior latissimus dorsi (PLD) is a fast twitch muscle. These muscles on opposite sides of a 3-week-old chick were removed, minced and replaced in the site of the other muscle and left to regenerate. The regenerating muscles were examined at various periods from 4 days onwards and their contractile properties were found to resemble those typical of the muscle they replaced and not the original muscle. The regenerating muscles from 8 days onwards displayed the morphological features of the control muscles in the contralateral site. By 14 days, differentiation was almost complete and neuromuscular junctions were seen. It is suggested that the physiological and morphological characteristics of a muscle are determined by its position and possibly also by its innervation.


2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Willemijn Groenendaal ◽  
Jeroen Jeneson ◽  
Robert Wiseman ◽  
Klaas Nicolay ◽  
Peter Hilbers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document