The impact of different motor activity on body composition, density of capillaries and fibers in the heart and soleus muscles, and cell's migration in vitro in male rats

1972 ◽  
Vol 30 (3) ◽  
pp. 207-216 ◽  
Author(s):  
J. Pařízková ◽  
M. Wachtlová ◽  
M. Soukupová
2019 ◽  
Vol 12 (3) ◽  
pp. 1505-1517 ◽  
Author(s):  
Jyothi Ashok Kumar ◽  
Thotakura Balaji ◽  
C. Swathi Priyadarshini ◽  
Manickam Subramanian ◽  
Indumathi Sundaramurthi

Every human being is exposed to the stress in one or the other form in the day to day life. Most of the existing studies on the impact of stress on the male reproduction were assessed by using single stressor, which may lead habituation to that stressor. The present study intends to estimate the consequence of stress on motor activity, sperm quality and histopathology of the testis in stress-induced male rats using multimodal stress one per day. Four weeks old Wister albino rats were randomly split into 4 groups and induced multimodal stress at different ages of life span. After induction of stress serum corticosterone levels, muscle strength and coordination, quality of sperm and histopathology of testes were estimated. Elevated serum corticosterone levels and body weight, reduced muscle strength, coordination. Sperm concentration and motility was significantly reduced and increased morphologically abnormal sperm in stress induced animals but sperm viability was not altered much. Histopathology of testes in stress received animals showed decreased tubular diameter and increased intertubular space. Multimodal stress caused elevated serum corticosterone and body weight, decreased motor activity, sperm quality and degenerative changes in the testis


2005 ◽  
Vol 289 (5) ◽  
pp. H1843-H1850 ◽  
Author(s):  
Ali Razmara ◽  
Diana N. Krause ◽  
Sue P. Duckles

Activation of inflammatory mechanisms contributes to cerebrovascular pathophysiology. Male gender is associated with increased stroke risk, yet little is known about the effects of testosterone in the cerebral circulation. Therefore, we explored the impact of testosterone treatment on cerebrovascular inflammation with both in vivo and in vitro models of inflammation. We hypothesized that testosterone would augment the expression of two vascular markers of cellular inflammation, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Using four groups of male rats [intact, orchiectomized (ORX), and ORX treated with either testosterone (ORXT) or the testosterone metabolite 17β-estradiol (ORXE)], we determined effects of the sex hormones on cerebrovascular inflammation after intraperitoneal LPS injection. Western blot analysis showed that induction of inflammatory markers was increased in cerebral blood vessels from ORXT rats compared with intact or ORX rats. In contrast, in cerebral blood vessels from ORXE rats, there was a significant decrease in endotoxin-induced COX-2 and iNOS protein levels. Confocal microscopy of cerebral blood vessels from ORXT rats showed increased COX-2 and iNOS immunoreactivity in both endothelial and smooth muscle cells after LPS treatment. In vitro incubation with LPS also induced COX-2 in pial vessels isolated from the four animal treatment groups, with the greatest induction observed in ORXT vessels compared with the ORX and ORXE groups. Production of PGE2, a principal COX-2-derived prostaglandin end product, was also greatest in cerebral vessels isolated from ORXT rats. In conclusion, testosterone increases cerebrovascular inflammation; this effect may contribute to stroke differences between men and women.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chong-Yin Huang ◽  
Ya-Jun Huang ◽  
Zhuo-Yi Zhang ◽  
Yi-Song Liu ◽  
Zhao-Ying Liu

Background:Macleaya cordata (Willd.) (Papaveraceae) is listed as a feed additive in animal production by the European Food Authority.Methods: The metabolites of chelerythrine in rats were measured in vitro and in vivo by rapid and accurate high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (HPLC/QqTOF-MS). The structures of CHE metabolites were elucidated by comparing their changes in accurate molecular masses and fragment ions with those of parent ion or metabolite. The metabolic enzymes that were involved in chelerythrine reduction were investigated using an inhibition method. The tissue distribution of chelerythrine and the effects on NQO1 following intragastric administration with M. cordata extracts in rats were examined.Results: A total of twelve metabolites of chelerythrine were characterized by this approach in rat liver S9 and in vivo. The reduction of the iminium bond of chelerythrine and subsequent O-demethylation was the main metabolic pathway of chelerythrine in rat liver S9 while the reduction of the iminium bond of chelerythrine was the main metabolic pathway of chelerythrine in rats in vivo. After the rats were given intragastric administration, the low concentration residues of sanguinarine and chelerythrine in different rat tissues were found at 48 h after the last dose, suggesting that both compounds could be widely distributed in tissues. The results also indicated that XO, NQO1, NQO2, and carbonyl reductase are involved in chelerythrine reduction. Macleaya cordata extracts treated female and male rats, respectively, showed different responses, inhibiting NQO1 activity in males, but inducing NQO1 activity in females. Chelerythrine had a weak impact on NQO1 activity, but sanguinarine inhibited NQO1 activityConclusion: Through studying the effects of cytosolic reductase inhibitors on chelerythrine reduction and the impact of chelerythrine and sanguinarine on the activity of NQO1 in vitro and in vivo, we clarified the potential drug interaction of Macleaya cordata extract in clinical application, so as to provide theoretical guidance for clinically safe medication. In addition, it provided a reference basis for the metabolic mechanism of chelerythrinein rats.


2007 ◽  
Vol 293 (5) ◽  
pp. E1385-E1392 ◽  
Author(s):  
L. Pinilla ◽  
R. Fernández-Fernández ◽  
J. Roa ◽  
J. M. Castellano ◽  
M. Tena-Sempere ◽  
...  

Different signals with key roles in energy homeostasis regulate the reproductive axis. These include neuropeptide Y and polypeptide YY3-36, whose type Y2 receptor is the most abundant of this family in the brain. We evaluated herein the putative roles of Y2 receptors in the control of gonadotropin secretion by means of central administration of PYY13-36 (agonist of Y2 receptors) and BIIE 0246 (antagonist of Y2 receptors) to intact and orchidectomized male rats. In addition, the ability of PYY13-36 to elicit GnRH and gonadotropin secretion in vitro and the impact of fasting on LH responses to PYY13-36 in vivo were also monitored. Central administration of PYY13-36 significantly decreased the circulating levels of both gonadotropins, an effect that was observed in prepubertal and adult rats. Yet a dual action of Y2 receptors in the control of male gonadotropic axis was evidenced as their activation induced 1) stimulation of gonadotropin responses to GnRH at the pituitary but 2) inhibition of GnRH secretion at the hypothalamus. Antagonization of Y2 receptors failed to modify basal LH secretion in intact males either after being fed ad libitum or after being fasted. In contrast, their central blockade in orchidectomized rats evoked a significant increase in circulating LH and FSH level, suggesting the constitutive activation of Y2 receptor in such stimulated conditions. In summary, our data evidence a complex mode of action of Y2 receptors in the control of gonadotropic axis, with stimulatory and inhibitory actions at different levels of the system that are sensitive to the gonadal status.


2020 ◽  
Vol 59 (1) ◽  
pp. 147-154
Author(s):  
Pierre Sentenac ◽  
Gianluca Samarani ◽  
Patrice Bideaux ◽  
Pierre Sicard ◽  
Benjamin Bourdois ◽  
...  

Abstract OBJECTIVES Pulmonary hypertension and heart disease contribute to the high morbidity rate following pneumonectomy (PN). The pathophysiology is still poorly understood. The objective was to investigate the consequences of PN on cardiopulmonary function in rats and to explore in vitro the involved mechanisms. METHODS Sixty Sprague-Dawley male rats randomly underwent either a right PN (PN group) or sham surgery. Ten rats per group were sacrificed on postoperative days 3, 7 and 28. Cardiopulmonary alterations were investigated by echocardiographic, haemodynamic and histological analyses. In vitro, the shear stress was reproduced using a Flexcell Tension™ cyclic stretch on cultured human pulmonary endothelial cells (P-ECs) to investigate the impact on pulmonary artery smooth muscle cell (PA-SMC) growth. Data are expressed as mean ± SD. RESULTS Mean pulmonary arterial pressure gradually increased in the PN group to reach 35 ± 7 mmHg on postoperative day 28 vs 18 ± 4 in sham (P = 0.001), likewise the proportion of muscularized distal pulmonary arteries, 83 ± 1% vs 5 ± 1%, respectively (P < 0.001), related to in situ PA-SMC proliferation. The right ventricle area and lateral wall thickness were doubled in the PN group on postoperative day 28. The left ventricle ejection fraction decreased on postoperative days 7 and 28 while the right ventricle function was maintained. In vitro, the human PA-SMC growth was significantly greater when seeded with stretched vs non-stretched P-EC media, highlighting the role of shear stress on the P-EC paracrine function. CONCLUSIONS Right PN led to pulmonary hypertension and proportional right heart remodelling in rats. The shear stress related to high blood flow alters the pulmonary endothelial paracrine control of SMC growth.


2021 ◽  
Vol 11 (12) ◽  
pp. 385-395
Author(s):  
O. Denefil

Alcohol use disorders affect millions of individuals worldwide. The impact of these facts lies in the elevated social and economic costs. Liver metabolizes 75-98 % of ethanol that enters the organism. If the level of alcohol in the liver cells exceeds its degradation rate, alcoholic liver disease develops. The aim of the study was to determine the peculiarities of hepatotoxicity after simulation of of ethanol hepatosis and non-alcoholic steatohepatitis of high and low-motor active rats. Material and methods of investigation. The experiments were performed on on 72 white outbred male rats. The animals were divided into three groups: control, non-alkoholic hepatitis (NAH), ethanol hepatosis (EH). Each of group was subdivided – animals with high and low-motor activity (HA and LA). Contents of middle-mass molecules (MMM) were determined in the blood serum. Results. The analysis of the results shows that the levels of MMM in blood serum are increasing. Dystrophic changes that appear in a consequence of hypoxia are noted in NAH and EH. Both morphological and biochemical changes were more significant in HA animals. The degree of MMM accumulation depends on the severity of the pathology and motor activity of the animals. Less activity of MMM238 is observed in HA rats, which can be explained by the development of multi-organ pathology. Conclusions. During our investigations it was found the significant increasing of MMM levels in blood serum in rats with ethanol hepatosis and nonalkoholic hepatitis. The accumulation of MMM is not only a marker of endotoxication, they also increase the course of the pathological process, acquiring the roles of secondary toxins, affect the viability of all organs and systems. The degree of MMM accumulation depends on the moto activity of the animals and simulated pathology and is more significant in highly active animals, compared with low-active in the ethanol using. Less activity of MMM238 is observed in HA rats with EH, which can be explained by the development of multi-organ pathology, in particular, renal impairment. Morphological investigations showed that the grade of liver injury was more significant in HA rats.


2019 ◽  
Vol 316 (5) ◽  
pp. H1192-H1201 ◽  
Author(s):  
Wael Eldahshan ◽  
Tauheed Ishrat ◽  
Bindu Pillai ◽  
Mohammed A. Sayed ◽  
Abdulrahman Alwhaibi ◽  
...  

The angiotensin II type 2 receptor (AT2R) agonist, compound 21 (C21), has been shown to be neurovascularly protective after ischemic stroke in male rats. In the current study, we aim to study the impact of C21 treatment on female rats. Young female Wistar rats were subjected to different durations of middle cerebral artery occlusion (MCAO) (3 h, 2 h, and 1 h) using a silicone-coated monofilament, treated at reperfusion with 0.03 mg/kg ip of C21 and followed up for different times (1, 3, and 14 days) after stroke. Behavioral tests were performed (Bederson, paw grasp, beam walk, and rotarod), and animals were euthanized for infarct size analysis and Western blot analysis. In vitro, primary male and female brain microvascular endothelial cells (ECs) were grown in culture, and the expression of the AT2R was compared between males and females. At 1 day, C21 treatment resulted in an improvement in Bederson scores. However, at 3 days and 14 days, the impact of C21 on stroke outcomes was less robust. In vitro, the expression of the AT2R was significantly higher in female ECs compared with male ECs. In conclusion, C21 improves Bederson scores after stroke in female rats when administered early at reperfusion. The ability of C21 to exert its neuroprotective effects might be affected by fluctuating levels of female hormones. NEW & NOTEWORTHY The present study shows the neuroprotective impact of C21 on ischemic stroke in female rats and how the protective effects of C21 can be influenced by the hormonal status of female rodents.


1962 ◽  
Vol 39 (3) ◽  
pp. 423-430
Author(s):  
H. L. Krüskemper ◽  
F. J. Kessler ◽  
E. Steinkrüger

ABSTRACT 1. Reserpine does not inhibit the tissue respiration of liver in normal male rats (in vitro). 2. The decrease of tissue respiration of the liver with simultaneous morphological stimulation of the thyroid gland after long administration of reserpine is due to a minute inhibition of the hormone synthesis in the thyroid gland. 3. The morphological alterations of the thyroid in experimental hypothyroidism due to perchlorate can not be prevented with reserpine.


Reproduction ◽  
2000 ◽  
pp. 127-135 ◽  
Author(s):  
W Bone ◽  
NG Jones ◽  
G Kamp ◽  
CH Yeung ◽  
TG Cooper

The effects of the male antifertility agent ornidazole on glycolysis as a prerequisite for fertilization were investigated in rats. Antifertility doses of ornidazole inhibited glycolysis within mature spermatozoa as determined from the lack of glucose utilization, reduced acidosis under anaerobic conditions and reduced glycolytic enzyme activity. As a consequence, cauda epididymidal spermatozoa from ornidazole-fed rats were unable to fertilize rat oocytes in vitro, with or without cumulus cells, which was not due to transfer of an inhibitor in epididymal fluid with the spermatozoa. Under IVF conditions, binding to the zona pellucida was reduced in spermatozoa from ornidazole-fed males and the spermatozoa did not undergo a change in swimming pattern, which was observed in controls. The block to fertilization could be explained by the disruption of glycolysis-dependent events, since reduced binding to the zona pellucida and a lack of kinematic changes were demonstrated by control spermatozoa in glucose-free media in the presence of respiratory substrates. The importance of glycolysis for binding to, and penetration of, the zona pellucida, and hyperactivation in rats is discussed in relation to the glycolytic production of ATP in the principal piece in which local deprivation of energy may explain the reduced force of spermatozoa from ornidazole-fed males.


Sign in / Sign up

Export Citation Format

Share Document