The influence of thickness and deposition temperature on the conduction activation energy of CdSe0.2Te0.8 thin films

1990 ◽  
Vol 25 (3) ◽  
pp. 1803-1807 ◽  
Author(s):  
P. J. Sebastian ◽  
V. Sivaramakrishnan
1998 ◽  
Vol 517 ◽  
Author(s):  
Yoshiyasu Yamada ◽  
Takao Suzuki

AbstractThe very large perpendicular magnetic anisotropy of the order of 2 x 107 erg/cm3 at room temperature was found in CoJ-x Ptx(0<x<0.5) alloy thin films made by e-beam evaporation. The large magnetic anisotropy is likely related to the anisotropic Co-Co bonding distribution, which is similar to the cases of Co/Pt multilayers and FePt alloy thin films. The activation energy estimated for the ordering is approximately 0.3 eV, which is preferably compared to 0.2 eV for FePt. A model is proposed, for which both a short range and long range ordering are present, depending on substrate deposition temperature.


1999 ◽  
Vol 5 (S2) ◽  
pp. 844-845
Author(s):  
S.C. Cheng ◽  
A.K. Kalkan ◽  
S.H. Bae ◽  
S.J. Fonash

In an earlier report we have shown that the infrared photoluminescence (PL) from nanocrystalline Si films shifts to lower energies with increasing deposition temperature (in the range of 180-340 °C) and with thermal annealing. These films were deposited on Corning 1737 glass substrates using a Plasma-Therm SLR 770 ECR-PECVD system to a thickness of 4500 Å. The redshift of PL correlates well with the narrowing of (111) XRD peak, the redshift of the optical absoiption profile, the increasing conductivity and the decreasing activation energy for conductivity. Therefore, the energy shift of the PL has been considered as the result of variations in bandgap due to variations in crystallite size; i.e., variations in the quantum confinement. For the samples investigated, the PL band peak was found within the extrema of 0.99 to 0.81 eV (at 77 K). These extreme values correspond to the film deposited at 180 °C (0.99 eV PL) and the same film annealed at 600 °C for 72 hours (0.81 eV PL).


2011 ◽  
Vol 324 ◽  
pp. 245-248
Author(s):  
Hassan Ghamlouche ◽  
Saleh Thaker Mahmoud ◽  
Naser Qamhieh ◽  
Ahmad I. Ayesh

The electrical and optical characteristics of indium doped Se2Sb2Te6phase-change alloy are studied. It is found that adding indium to Se2Sb2Te6 alloy (In0.3Se2Sb2Te6) increased the crystallization temperature and reduced the electrical conduction activation energy. The capacitance-temperature measurements showed a drastic change in the capacitance of the modified film when the temperature approaches the crystallization temperature, and eventually the capacitance becomes negative and nonlinear. The negativity and nonlinearity in the capacitancevoltage dependence can be attributed to the growth of conductive crystalline islands by increasing the temperature.


2007 ◽  
Vol 992 ◽  
Author(s):  
Christos F. Karanikas ◽  
James J. Watkins

AbstractThe kinetics of the deposition of ruthenium thin films from the hydrogen assisted reduction of bis(2,2,6,6-tetramethyl-3,5-heptanedionato)(1,5-cyclooctadiene)ruthenium(II), [Ru(tmhd)2cod], in supercritical carbon dioxide was studied in order to develop a rate expression for the growth rate as well as to determine a mechanism for the process. The deposition temperature was varied from 240°C to 280°C and the apparent activation energy was 45.3 kJ/mol. Deposition rates up to 30 nm/min were attained. The deposition rate dependence on precursor concentrations between 0 and 0.2 wt. % was studied at 260°C with excess hydrogen and revealed first order deposition kinetics with respect to precursor at concentrations lower then 0.06 wt. % and zero order dependence at concentrations above 0.06 wt. %. The effect of reaction pressure on the growth rate was studied at a constant reaction temperature of 260°C and pressures between 159 bar to 200 bar and found to have no measurable effect on the growth rate.


2015 ◽  
Vol 119 (2) ◽  
pp. 659-665
Author(s):  
M. Manouchehrian ◽  
M. M. Larijani ◽  
S. M. Elahi ◽  
M. A. Moghri Moazzen

Sign in / Sign up

Export Citation Format

Share Document