Strength and viscosity of metals in a wide range of strain rate variation

1995 ◽  
Vol 36 (3) ◽  
pp. 438-443 ◽  
Author(s):  
V. A. Ogorodnikov ◽  
E. S. Tyun'kin ◽  
A. G. Ivanov
2019 ◽  
Vol 11 (1) ◽  
pp. 168781401882493 ◽  
Author(s):  
Xiawei Feng ◽  
Xiaochen Wang ◽  
Quan Yang ◽  
Jiquan Sun

Due to the development of thin slab hot rolling technology, hot rolling thin strip at a higher speed is inevitable. As a result of high-speed rolling, thin slab is deformed at a wide range of strain rate inside the rolling zone. Because the flow stress of steel is strongly dependent on strain rate at elevated temperature, it is imperative to consider its variation when calculating roll force and roll pressure. By substituting time with speed and length, strain rate variation is obtained. A strain rate–dependent flow stress curve for non-oriented silicon steel is implemented into Karman equation to calculate rolling pressure distribution. It is revealed that the rolling force can be effectively reduced by decreasing the radius of work roll. It is further revealed that the appearance of strip/roll surface sticking is more likely at the exit of rolling zone than the neutral point, because strain rate reaches zero and the flow stress drops at the exit. Combined with Influence Function Method for elastic deformation of roll surface, the proposed model can predict roll force with a good accuracy compared with industrial data.


2015 ◽  
Vol 719-720 ◽  
pp. 87-90
Author(s):  
Muneer Baig ◽  
Hany Rizk Ammar ◽  
Asiful Hossain Seikh ◽  
Mohammad Asif Alam ◽  
Jabair Ali Mohammed

In this investigation, bulk ultra-fine grained and nanocrystalline Al-2 wt.% Fe alloy was produced by mechanical alloying (MA). The powder was mechanically milled in an attritor for 3 hours and yielded an average crystal size of ~63 nm. The consolidation and sintering was performed using a high frequency induction sintering (HFIS) machine at a constant pressure of 50 MPa. The prepared bulk samples were subjected to uniaxial compressive loading over wide range of strain rates for large deformation. To evaluate the effect of sintering conditions and testing temperature on the strain rate sensitivity, strain rate jump experiments were performed at high temperature. The strain rate sensitivity of the processed alloy increased with an increase in temperature. The density of the bulk samples were found to be between 95 to 97%. The average Vickers micro hardness was found to be 132 Hv0.1.


2011 ◽  
Vol 82 ◽  
pp. 124-129 ◽  
Author(s):  
Ezio Cadoni ◽  
Matteo Dotta ◽  
Daniele Forni ◽  
Stefano Bianchi

In this paper the first results of the mechanical characterization in tension of two high strength alloys in a wide range of strain rates are presented. Different experimental techniques were used for different strain rates: a universal machine, a Hydro-Pneumatic Machine and a JRC-Split Hopkinson Tensile Bar. The experimental research was developed in the DynaMat laboratory of the University of Applied Sciences of Southern Switzerland. An increase of the stress at a given strain increasing the strain-rate from 10-3 to 103 s-1, a moderate strain-rate sensitivity of the uniform and fracture strain, a poor reduction of the cross-sectional area at fracture with increasing the strain-rate were shown. Based on these experimental results the parameters required by the Johnson-Cook constitutive law were determined.


2020 ◽  
Vol 27 ◽  
pp. 1218-1223
Author(s):  
Sagar Chokshi ◽  
Piyush Gohil ◽  
Amul Lalakiya ◽  
Parth Patel ◽  
Amit Parmar

Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 324 ◽  
Author(s):  
Marcin Chybiński ◽  
Łukasz Polus ◽  
Maria Ratajczak ◽  
Piotr Sielicki

The present study focused on the behaviour of the AW-6060 aluminium alloy in peak temper condition T6 under a wide range of loads: tensile loading, projectile and explosion. The alloy is used as a structural component of civil engineering structures exposed to static or dynamic loads. Therefore, it was crucial to determine the material’s behaviour at low and intermediate rates of deformation. Despite the fact that the evaluation of the strain rate sensitivity of the AW-6060 aluminium alloy has already been discussed in literature, the authors of this paper wished to further investigate this topic. They conducted tensile tests and confirmed the thesis that the AW-6060 T6 aluminium alloy has low strain rate sensitivity at room temperature. In addition, the fracture surfaces subjected to different loading (tensile loading, projectile and explosion) were investigated and compared using a scanning electron microscope, because the authors of this paper were trying to develop a new methodology for predicting how samples had been loaded before failure occurred based on scanning electron microscopy (SEM) micrographs. Projectile and explosion tests were performed mainly for the SEM observation of the fracture surfaces. These tests were unconventional and they represent the originality of this research. It was found that the type of loading had an impact on the fracture surface.


2019 ◽  
Vol 92 ◽  
pp. 05008
Author(s):  
Zain Maqsood ◽  
Junichi Koseki ◽  
Hiroyuki Kyokawa

It has been unanimously acknowledged that the strength and deformation characteristics of bounded geomaterials, viz. cemented soils and natural rocks, are predominantly governed by the rate of loading/deformation. Rational evaluation of these time-dependent characteristics due to viscosity and ageing are vital for the reliable constitutive modelling. In order to study the effects of ageing and loading/strain rate (viscosity) on the behaviour of bounded geomaterials, a number of unconfined monotonic loading tests were performed on Gypsum Mixed Sand (GMS) specimens at a wide range of axial strain rates; ranging from 1.9E-05 to 5.3E+00 %/min (27,000 folds), and at different curing periods. The results indicate shifts in the viscous behaviour of GMS at critical strain rates of 2.0E-03 and 5.0E-01 %/min. In the light of this finding, the results are categorized into three discrete zones of strain rates, and the behaviour of GMS in each of these zones is discussed. A significant dependency of peak strength and stress-strain responses on strain rate was witnessed for specimens subjected to strain rates lesser than 2.0E-03 %/min, and the effects of viscosity/strain rate was found to be insignificant at strain rate higher than 5.0E-01%/min.


2017 ◽  
Vol 31 (9) ◽  
pp. 1181-1203 ◽  
Author(s):  
Xueyao Hu ◽  
Hui Guo ◽  
Weiguo Guo ◽  
Feng Xu ◽  
Longyang Chen ◽  
...  

Theoretical and experimental studies on the compressive mechanical behavior of 4-harness satin weave carbon/epoxy composite laminates under in-plane loading are conducted over the temperature range of 298–473 K and the strain rate range of 0.001–1700/s in this article. The stress–strain curves of 4-harness satin weave composites are obtained at different strain rates and temperatures, and key mechanical properties of the material are determined. The deformation mechanism and failure morphology of the samples are observed and analyzed by scanning electron microscope (SEM) micrographs. The results show that the uniaxial compressive mechanical properties of 4-harness satin weave composites are strongly dependent on the temperature but are weakly sensitive to strain rate. The peak stress and elastic modulus of the material have the trend of decrease with the increasing of temperature, and the decreasing trend can be expressed as the functional relationship of temperature shift factor. In addition, SEM observations show that the quasi-static failure mode of 4-harness satin weave composites is shear failure along the diagonal lines of the specimens, while the dynamic failure modes of the material are multiple delaminations and longitudinal splitting, and with the increasing of temperature, its longitudinal splitting is more serious, but the delamination is relatively reduced. A constitutive model with thermomechanical coupling effects is proposed based on the experimental results and the increment theory of elastic–plastic mechanics. The experimental verification and numerical analysis show that the model is shown to be able to predict the finite deformation behavior of 4-harness satin weave composites over a wide range of temperatures.


Sign in / Sign up

Export Citation Format

Share Document