Optimum clearance of a gas hydrostatic thrust bearing with maximum load capacity

2000 ◽  
Vol 35 (4) ◽  
pp. 525-533 ◽  
Author(s):  
V. I. Grabovskii
1977 ◽  
Vol 99 (1) ◽  
pp. 82-88 ◽  
Author(s):  
I. Etsion ◽  
D. P. Fleming

A flat sector shaped pad geometry for gas lubricated thrust bearings is analyzed considering both pitch and roll angles of the pad and the true film thickness distribution. Maximum load capacity is achieved when the pad is tilted so as to create a uniform minimum film thickness along the pad trailing edge. Performance characteristics for various geometries and operating conditions of gas thrust bearings are presented in the form of design curves. A comparison is made with the rectangular slider approximation. It is found that this approximation is unsafe for practical design, since it always overestimates load capacity.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
M. Mahbubur Razzaque ◽  
M. Zakir Hossain

Effects of grooving in a porous faced hydrostatic circular step thrust bearing are investigated using a mathematical model based on the narrow groove theory (NGT). It is shown that enhancement of load capacity by grooving the step is possible at moderate level of permeability of the porous facing. Load capacity drops sharply with the increase of porous facing thickness. However, this drop in load capacity occurs mostly within a small thickness of the porous facing. Considering the coupled effects of permeability and inertia, it is recommended that the dimensionless step location should be 0.5–0.8 and the dimensionless step height should be less than five to take advantage of grooving. The groove geometric parameters such as groove inclination angle, fraction of grooved area and groove depth corresponding to the maximum load capacity are found to be the same for both with and without porous facing. However, with porous facing, the sensitivity of the load capacity on the groove parameters reduces. At high level of permeability, the effects of grooves may become insignificant because of high seepage flow through the porous facing.


1991 ◽  
Vol 25 (6) ◽  
pp. 838-845 ◽  
Author(s):  
Yu. Ya. Boldyrev ◽  
Yu. V. Borisov

1971 ◽  
Vol 93 (1) ◽  
pp. 102-111 ◽  
Author(s):  
C. Wachmann ◽  
S. B. Malanoski ◽  
J. H. Vohr

Self-heating during operation causes a bearing to undergo thermal distortion. A method is presented to determine the consequent effects on the load capacity of a spiral-grooved air-lubricated thrust bearing designed for maximum load capacity. The effect of mode of heat removal is discussed. Appropriate performance curves and a worked example are given.


Author(s):  
M. Mahbubur Razzaque ◽  
M. Zakir Hossain

Assuming narrow grooves and considering inertia effect, an equation for the pressure distribution in a grooved circular step thrust bearing has been derived. A parametric study has been performed to investigate the effects of step and groove geometry on pressure distribution, load capacity and lubricant flow rate. Three arrangements of the bearing surface have been studied and it has been found that the maximum load capacity is obtained by putting grooves only on the step. Inertia significantly affects the load capacity. To get increased load capacity with increase of inertia, the step inner radius should be larger than 0.45 times of the outer radius. For the most enhancement of hydrodynamic load, the groove inclination angle should be 135° with the direction of rotation and the depth should be twice the minimum film thickness.


1959 ◽  
Vol 81 (2) ◽  
pp. 208-213
Author(s):  
R. E. Brandon ◽  
H. C. Bahr

Results of full-scale maximum load capacity tests on large, 3600-rpm, pivoted-shoe and tapered-land thrust bearings are reported. The results show 700 psi capacity for the pivoted-shoe bearing and 1085 psi for the tapered-land type. Additional evidence of thermal distortion and its effect on thrust-bearing capacity are discussed. A brief description of a new thrust-bearing test installation also is included.


Author(s):  
Guo Xiang ◽  
Yanfeng Han ◽  
Renxiang Chen ◽  
Jiaxu Wang ◽  
Xiaokang Ni ◽  
...  

The novelty of this study is to develop a hydrodynamic lubrication numerical model for coupled microgroove journal-thrust bearings (or coupled bearings) under water-lubricated condition. In the present model, the continuity of the hydrodynamic pressure and the fluid field (or coupled hydrodynamic effect) at common boundary is considered to reveal the mutual effect between the hydrodynamic behavior of the journal bearing and the thrust bearing. The lubrication performances of the coupled microgroove bearing with three bottom shapes, i.e., isosceles triangle, right triangle, and left triangle, are studied comparatively. Additionally, the effects of the microgroove depth on the lubrication performances of the coupled bearing are discussed. The present study reveals that the coupled hydrodynamic effect generated by the coupled bearing can improve the lubrication performance for both the journal and the thrust bearing. The microgroove with left triangle bottom shape yields the optimal lubrication performance as compared to the other two. There is an optimal groove depth that generates the maximum load capacity and the minimum friction coefficient for both the journal and the thrust bearing.


1956 ◽  
Vol 23 (4) ◽  
pp. 581-583
Author(s):  
C. F. Kettleborough

Abstract Neglecting side leakage the maximum load capacity which can be carried per unit width is obtained when there is a stepped convergence to the oil film. However, when side leakage is considered the stepped bearing is only slightly better than the tilting-pad bearing, this being due to the fact that the maximum oil pressure occurs at the step where the oil-film thickness is a maximum and hence there is easy means of escape for oil. The tapered-land bearing does not suffer from this disadvantage and computations have been carried out which show that the maximum load this bearing is capable of supporting is about 14 per cent greater than the maximum load capable of being supported by the tilting-pad bearing, both cases not neglecting side leakage. Some numerical calculations are made.


Lubricants ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 47
Author(s):  
Federico Colombo ◽  
Luigi Lentini ◽  
Terenziano Raparelli ◽  
Andrea Trivella ◽  
Vladimir Viktorov

Because of their distinctive characteristics, aerostatic bearings are particularly suitable for high-precision applications. However, because of the compressibility of the lubricant, this kind of bearing is characterized by low relative stiffness and poor damping. Compensation methods represent a valuable solution to these limitations. This paper presents a design procedure for passively compensated bearings controlled by diaphragm valves. Given a desired air gap height at which the system should work, the procedure makes it possible to maximize the stiffness of the bearing around this value. The designed bearings exhibit a quasi-static infinite stiffness for load variation ranging from 20% to almost 50% of the maximum load capacity of the bearing. Moreover, the influence of different parameters on the performance of the compensated pad is evaluated through a sensitivity analysis.


Sign in / Sign up

Export Citation Format

Share Document