Soil salinity effects on transpiration and net photosynthetic rates, stomatal conductance and Na+ and Cl- contents in durum wheat

1996 ◽  
Vol 38 (4) ◽  
Author(s):  
S. K. Sharma
1994 ◽  
Vol 30 (1) ◽  
pp. 1-16 ◽  
Author(s):  
B. Gail Smith ◽  
Paul J. Burgess ◽  
M. K. V. Carr

SummaryStomatal conductances (g) and photosynthetic rates (A) were monitored in six tea clones planted in a clone X irrigation experiment in the Southern Highlands of Tanzania. Measurements were made during the warm dry seasons of 1989 and 1990. There was no genotype X treatment interaction in the response in A or g of the various clones to irrigation. Irrigation increased A more than it increased g. Irrigation also increased the temperature optimum for photosynthesis and decreased photo-inhibition at high illuminance. Clones differed in g and A, and in the relationship between leaf temperature and A. The implications of these findings for clone selection are discussed.


2019 ◽  
pp. 97-100
Author(s):  
Faruk ÖZKUTLU ◽  
Şevket Metin KARA

2020 ◽  
Vol 71 (7) ◽  
pp. 2339-2350 ◽  
Author(s):  
Haruki Kimura ◽  
Mimi Hashimoto-Sugimoto ◽  
Koh Iba ◽  
Ichiro Terashima ◽  
Wataru Yamori

Abstract It has been reported that stomatal conductance often limits the steady-state photosynthetic rate. On the other hand, the stomatal limitation of photosynthesis in fluctuating light remains largely unknown, although in nature light fluctuates due to changes in sun position, cloud cover, and the overshadowing canopy. In this study, we analysed three mutant lines of Arabidopsis with increased stomatal conductance to examine to what extent stomatal opening limits photosynthesis in fluctuating light. The slac1 (slow anion channel-associated 1) and ost1 (open stomata 1) mutants with stay-open stomata, and the PATROL1 (proton ATPase translocation control 1) overexpression line with faster stomatal opening responses exhibited higher photosynthetic rates and plant growth in fluctuating light than the wild-type, whereas these four lines showed similar photosynthetic rates and plant growth in constant light. The slac1 and ost1 mutants tended to keep their stomata open in fluctuating light, resulting in lower water-use efficiency (WUE) than the wild-type. However, the PATROL1 overexpression line closed stomata when needed and opened stomata immediately upon irradiation, resulting in similar WUE to the wild-type. The present study clearly shows that there is room to optimize stomatal responses, leading to greater photosynthesis and biomass accumulation in fluctuating light in nature.


1996 ◽  
Vol 126 (2) ◽  
pp. 183-190 ◽  
Author(s):  
M. V. K. Sivakumar ◽  
B. R. Ntare ◽  
J. M. Roberts

SUMMARYThe response of four cowpea (Vigna unguiculata(L.) Walp.) cultivars to the warm, semi-arid tropical environment at the ICRISAT Sahelian Center at Sadore, Niger was studied during 1985 and 1986 interms of leaf area index (LAI), dry matter (DM) accumulation, net photosynthesis, stomatal conductance, total water use and yield. Among the three improved cultivars, IT82D–716 is early and erect, cv. IT83S–947 is early and spreading and cv. TVX4659–03E is a medium-duration, highyielding, dual-purpose type. The local cv. Sadore Local is a long-duration, photosensitive, spreading type used mainly for fodder. In both years, Sadore Local recorded the highest LAI. IT82D–716 and IT83S–947 produced < 1·3 t/ha of DM in both years, whereas TVX 4659–03E produced > 2 t/ha of DM and proved superior to Sadore Local in partitioning DM into pods. The four cultivars did not differ significantly either in stomatal conductance or in net phytosynthetic rates. Observed maximum photosynthetic rates of c. 20 μmol/m2/s lie at the bottom of the range 21–38 μmol/m2/s reported for 31 cowpea genotypes in an earlier study. Photosynthetic rates increased with increasing photon flux density. TVX4659–03E had an advantage in total seed plus fodder yields while the local cultivar gave significantly greater fodder yields in both years. Seed and fodder yields, as well as water-use efficiency, confirmed the advantages offered by the dual-purpose cultivar TVX4659–03E. Future breeding efforts in the Sahel should focus on dual-purpose (grain/fodder) cowpea types.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1396
Author(s):  
Hany S. Osman ◽  
Salah M. Gowayed ◽  
Mohssen Elbagory ◽  
Alaa El-Dein Omara ◽  
Ahmed M. Abd El-Monem ◽  
...  

Water stress or soil salinity is considered the major environmental factor affecting plant growth. When both challenges are present, the soil becomes infertile, limiting plant productivity. In this work a field experiment was conducted during the summer 2019 and 2020 seasons to evaluate whether plant growth-promoting microbes (PGPMs) and nanoparticles (Si-ZnNPs) have the potential to maintain soybean growth, productivity, and seed quality under different watering intervals (every 11 (IW0), 15 (IW1) and 19 (IW2) days) in salt-affected soil. The most extended watering intervals (IW1 and IW2) caused significant increases in Na+ content, and oxidative damage indicators (malondialdehyde (MDA) and electrolyte leakage (EL%)), which led to significant reductions in soybean relative water content (RWC), stomatal conductance, leaf K+, photosynthetic pigments, soluble protein. Subsequently reduced the vegetative growth (root length, nodules dry weight, and total leaves area) and seeds yield. However, there was an enhancement in the antioxidants defense system (enzymatic and non-enzymatic antioxidant). The individual application of PGPMs or Si-ZnNPs significantly improved leaf K+ content, photosynthetic pigments, RWC, stomatal conductance, total soluble sugars (TSS), CAT, POD, SOD, number of pods plant−1, and seed yield through decreasing the leaf Na+ content, MDA, and EL%. The combined application of PGPMs and Si-ZnNPs minimized the adverse impact of water stress and soil salinity by maximizing the root length, heavier nodules dry weight, leaves area, TSS and the activity of antioxidant enzymes, which resulted in higher soybean growth and productivity, which suggests their use under harsh growing conditions.


1991 ◽  
Vol 116 (6) ◽  
pp. 1052-1057 ◽  
Author(s):  
T.J. Smalley ◽  
M.A. Dirr ◽  
A.M. Armitage ◽  
B.W. Wood ◽  
R.O. Teskey ◽  
...  

Leaf water status, carbohydrate levels, net photosynthesis, stomatal conductance, ABA, dihydrozeatin riboside (DHZR), and trans-zeatin riboside (ZR) levels were determined in a greenhouse during rooting of stem cuttings of Acer rubrum L. `Red Sunset' taken on 3 Sept. 1987 and 28 May 1988. Leaf water status deteriorated before rooting and improved after root emergence. Leaf carbohydrate concentrations (glucose, sucrose, total soluble sugars, and total carbohydrates) increased until rooting and decreased after rooting, while changes in starch concentrations were trendless. ABA levels increased after insertion of cuttings into the rooting medium, but decreased before rooting. No correlation between timing of rooting and concentrations of the cytokinins ZR or DHZR was observed. Photosynthetic rates during rooting were higher for the Sept. 1987 cuttings and did not decrease to the compensation point as did those for May 1988 cuttings. Low photosynthetic rates and stomatal conductance of the cuttings during rooting were associated with water stress. The relationship between photosynthetic rates of such cuttings and cytokinin (CK) or ABA content was unclear. Chemical names used: [S-(Z,E]-5-(1-hydroxy-2,6,6-trimethyl-4-oxo-2-cyclohexen-1-yl)-3-methyl-2, 4-pentadienoic acid (abscisic acid, ABA); 2-methyl-4-(1H-purin-6-ylamino)-2-buten-1-ol (zeatin, Z).


Sign in / Sign up

Export Citation Format

Share Document