scholarly journals Design of Flat Vaults with Topological Interlocking Solids

Author(s):  
Francesca Lecci ◽  
Cecilia Mazzoli ◽  
Cristiana Bartolomei ◽  
Riccardo Gulli

AbstractThis paper investigates the principles that regulate complex stereotomic constructions as a starting point for the design of a new two-dimensional floor structure based on the principles of TIM (Topological Interlocking Materials). These interlocking systems use an assembly of identical Platonic solids which, due to the mutual bearing between adjacent units and the presence of a global peripheral constraint, lock together to form pure geometric shapes. This type of structure offers several advantages such as a high energy dissipation capacity and tolerance towards localised failure, which has made it a popular research topic over the last 30 years. The current research project includes a case study of an assembly of interlocking cubes to create a “flat vault”. The resulting vault design features a striking appearance and its geometry may be manipulated to achieve different two-dimensional solutions, provided certain geometric conditions necessary for the stability of the system are followed.

2021 ◽  
pp. 107754632110109
Author(s):  
Jin-bao Li ◽  
Zhong-wei Hu ◽  
Zhao-dong Xu ◽  
Ying-qing Guo

To improve the efficiency of conventional isolation trench and lighten the impact of the excavation on neighbor buildings, a novel high damping isolation trench is proposed. The viscoelastic braces equipped in the high damping isolation trench can dissipate the energy of ground-borne vibration while providing supporting force to ensure the stability of the soil on both sides. According to two actual ancient buildings, two types of high damping isolation trenchs with the plane shape of U and L are designed to solve the potential damages caused by long-term train-induced vibration. First, three-dimensional finite/infinite models based on these two buildings are established, respectively. Then, the energy dissipation characteristics are obtained by experiments. Through calculation, the control effects of the high damping isolation trenchs for these two buildings are investigated. The results indicate that the viscoelastic braces possess high energy dissipation capacity. After setting the high damping isolation trenchs around the structures, even at a small excavation depth, the acceleration and velocity responses of the two buildings are reduced significantly. Furthermore, the selected U-shaped and L-shaped trenches also show superiority compared with the conventional linear-shaped trench in this project.


2010 ◽  
Vol 163-167 ◽  
pp. 398-405
Author(s):  
San Sheng Dong ◽  
Zi Xue Lei ◽  
Jun Hai Zhao

Based on the pseudo-static test of 6 high-strength RC columns with central reinforcement skeletons, this paper studied their hysterisis performance, degradation of strength and rigidity, and energy dissipation capacity, with the affecting factors analyzed. The result shows that the central reinforcement skeletons can compensate for the low plasticity and brittle failure susceptibility of high-strength concrete so that all the specimens have stable strength, slow rigidity degradation and high energy dissipation capacity at later stage of loading; the larger the core areas the higher the strengths and ductility of the specimens, but slightly faster the degradation of strength and energy dissipation capacity as compared with the specimens with smaller core areas; the spacing of ties, longitudinal reinforcement ratio of core area both influence the strength degradation and energy dissipation capacity of the specimens, but they have little effect on their strengths.


2020 ◽  
Vol 10 (22) ◽  
pp. 8264
Author(s):  
Sang-Woo Kim ◽  
Kil-Hee Kim

This study proposes a relatively simple steel damper with high energy dissipation capacity. Three types of steel dampers were evaluated for structural performance. The first damper with U-shape had two vertical members and a semicircular connecting member for energy dissipation. The second damper with an angled U-shape replaced the connecting member with a horizontal steel member. The last damper with D-shape had a horizontal member added to the U-shaped damper. All the dampers were designed with steel plates on both sides that transmitted external shear force to the energy-dissipating members. To evaluate the structural performance of the dampers, an in-plane cyclic shear force was applied to the specimens. The D-shaped damper showed ductile behavior with excellent energy dissipation capacity after yielding without decreasing in strength during cyclic load. In other words, the D-shaped specimen showed excellent performance, with about 3.5 times the strength of the U-shaped specimen and about 3.8 times the energy dissipation capacity due to the additional horizontal member. Furthermore, the efficient energy dissipation of the proposed D-shaped steel damper was confirmed from the finite element (FE) analytical and experimental results.


2020 ◽  
Vol 23 (10) ◽  
pp. 2057-2069
Author(s):  
Haotian Tao ◽  
Min Mao ◽  
Huifeng Yang ◽  
Weiqing Liu

This article proposes to use the bolted top and seat angles to provide excellent moment resistance and high energy dissipation capacity for glulam beam-to-column connection. Angles are anchored on the glulam beam using the glued-in steel plate technology and connected to the column by anchorage bolts. A theoretical model is presented in this article to evaluate the moment-resistant properties of the connection based on the component method. To validate the accuracy of the theoretical model, several hybrid connections are tested under monotonic and reversed cyclic load. The test results showed that the proposed hybrid connection has a high rotational stiffness and excellent moment resistance. The theoretical results are also consistent with those of the experimental model.


2017 ◽  
Vol 15 (2) ◽  
pp. 107-118 ◽  
Author(s):  
Michael Weizmann ◽  
Oded Amir ◽  
Yasha Jacob Grobman

This article presents a framework for the design process of structural systems based on the notion of topological interlocking. A new design method and a computational tool for generating valid architectural topological interlocking geometries are discussed. In the heart of the method are an algorithm for automatically generating valid two-dimensional patterns and a set of procedures for creating several types of volumetric blocks based on the two-dimensional patterns. Additionally, the computational tool can convert custom sets of closed planar curves into structural elements based on the topological interlocking principle. The method is examined in a case study of a building floor. The article concludes with discussions on the potential advantages of using the method for architectural design, as well as on challenging aspects of further development of this method toward implementation in practice.


2007 ◽  
Vol 582 ◽  
pp. 319-340 ◽  
Author(s):  
M. D. GRIFFITH ◽  
M. C. THOMPSON ◽  
T. LEWEKE ◽  
K. HOURIGAN ◽  
W. P. ANDERSON

The two-dimensional flow through a constricted channel is studied. A semi-circular bump is located on one side of the channel and the extent of blockage is varied by adjusting the radius of the bump. The blockage is varied between 0.05 and 0.9 of the channel width and the upstream Reynolds number between 25 and 3000. The geometry presents a simplified blockage specified by a single parameter, serving as a starting point for investigations of other more complex blockage geometries. For blockage ratios in excess of 0.4, the variation of reattachment length with Reynolds number collapses to within approximately 15%, while at lower ratios the behaviour differs. For the constrained two-dimensional flow, various phenomena are identified, such as multiple mini-recirculations contained within the main recirculation bubble and vortex shedding at higher Reynolds numbers. The stability of the flow to three-dimensional perturbations is analysed, revealing a transition to a three-dimensional state at a critical Reynolds number which decreases with higher blockage ratios. Separation lengths and the onset and structure of three-dimensional instability observed from the geometry of blockage ratio 0.5 resemble results taken from backward-facing step investigations. The question of the underlying mechanism behind the instability being either centrifugal or elliptic in nature and operating within the initial recirculation zone is analytically tested.


Author(s):  
Ziad Ahmad Aldrebi

The article discusses the most suitable base isolation bearings from the author's point of view for use in the buildings of old mosques in Syria, which are designed to protect such buildings from the effects of earthquakes that can occur at any time. Especially since many of such buildings have an architectural and cultural value, and are included in the world heritage list of UNESCO. Elastomeric bearings with high energy dissipation capacity (HDRB), elastomeric bearings with lead cores (LDRB), single friction pendulum, double friction pendulum and triple friction pendulum sliding (FPS) bearings are considered. What they consist of, their characteristics. Three, mosques in Syria that are of a great value from the point of view of architecture and cultural heritage are listed and described, and conclusions are drawn.


Author(s):  
S. V. Khonsari ◽  
G. L. England ◽  
M. Ghahramaninezhad-Gharehlar

A new structural connection, already discussed in previous papers, with very special and, in some respects, unique, features, such as having very high rotational capacity in bending, and high shear deformation capacity under shear, hence high energy-dissipation capacity under either type of loading, was developed. Specimens of either variant of this joint, fabricated with steel components, were already tested under bending and shear in a mainly separate manner. However, due to the particular shape of the connection, and its ability to be extruded in aluminium, in the most recent work the behaviour of its aluminium specimens under shear loading was studied. A series of specimens fabricated from various classes of aluminium alloys were tested whose results are reported here. All of the specimens except one were tested under ‘monotonic’ loading, and one specimen was tested ‘cyclically.’ Despite the deficiencies in the specimens caused by poor welding of their components, the results show the high shear deformation capacity of the aluminium specimens which was accompanied by appreciable strength.


Author(s):  
M. Gajdardziska-Josifovska

Parabolas have been observed in the reflection high-energy electron diffraction (RHEED) patterns from surfaces of single crystals since the early thirties. In the last decade there has been a revival of attempts to elucidate the origin of these surface parabolas. The renewed interest stems from the need to understand the connection between the parabolas and the surface resonance (channeling) condition, the latter being routinely used to obtain higher intensity in reflection electron microscopy (REM) images of surfaces. Several rather diverging descriptions have been proposed to explain the parabolas in the reflection and transmission Kikuchi patterns. Recently we have developed an unifying general treatment in which the parabolas are shown to be K-lines of two-dimensional lattices. Here we want to review the main features of this description and present an experimental diffraction pattern from a 30° MgO (111) surface which displays parabolas that can be attributed to the surface reconstruction.


Sign in / Sign up

Export Citation Format

Share Document