Application of Aluminium Alloys in a Structural Joint With Great Shear Deformation Capacity

Author(s):  
S. V. Khonsari ◽  
G. L. England ◽  
M. Ghahramaninezhad-Gharehlar

A new structural connection, already discussed in previous papers, with very special and, in some respects, unique, features, such as having very high rotational capacity in bending, and high shear deformation capacity under shear, hence high energy-dissipation capacity under either type of loading, was developed. Specimens of either variant of this joint, fabricated with steel components, were already tested under bending and shear in a mainly separate manner. However, due to the particular shape of the connection, and its ability to be extruded in aluminium, in the most recent work the behaviour of its aluminium specimens under shear loading was studied. A series of specimens fabricated from various classes of aluminium alloys were tested whose results are reported here. All of the specimens except one were tested under ‘monotonic’ loading, and one specimen was tested ‘cyclically.’ Despite the deficiencies in the specimens caused by poor welding of their components, the results show the high shear deformation capacity of the aluminium specimens which was accompanied by appreciable strength.

Author(s):  
S. V. Khonsari ◽  
G. L. England ◽  
A. R. Mohammadi

A new structural connection with special unique features was developed. While under bending it showed very high rotational capacity, in shear, unlike other existing connections, it also demonstrated a large shear deformation capacity. The ductile response of this connection stems from its innovative geometry as well as the ductility of the elements embedded in it. Since the previous shear tests on the specimens of this connection were carried out under ‘unrestricted’ conditions, the tests reported here were all under ‘restricted’ conditions. These shear tests consisted of ‘monotonic’ as well as ‘cyclic’ tests on mild steel specimens. Due to the restrictions imposed on the specimens during the test, the stiffness increased, compared with that of their unrestricted counterparts. Also, the transition from shear phase to tensile phase of deformation took place at an earlier stage compared with its non-restricted counterpart. The monotonic tests proved the high shear deformation capacity of the connection which exists alongside its high stiffness as well as strength. The cyclic tests, however, showed the large number of hysteresis cycles the specimens could endure before failure. Both types of tests, monotonic and cyclic, proved the ability of the connection to dissipate energy in shear under either loading regime in a very efficient manner.


Author(s):  
S. V. Khonsari ◽  
G. L. England ◽  
S. M. H. Parvinnia ◽  
E. Hajialiakbari-Fini

A new beam-to-column (horizontal brace-to-leg) and bracing-to-frame (diagonal brace-to-horizontal brace/leg) connection was developed. It is a comprehensive package in which the solution to all of the shortcomings and deficiencies of all conventional and/or commonly used connections is provided. The major deficiency of basically all the existing beam-to-column connections is their inability to deliver large rotations. In this devised connection, it has been solved by using a totally different geometry—a geometry which does not restrict the joint from deforming freely in a smooth, uniform and non-violent manner. Such mode of deformation, if delivered by a ductile material, should lead to a high energy dissipation capacity. Especially, if the ductility of the constituting material of the connection is not degraded as a result of fabrication operations, or if so, it is restored through practicing a suitable heat treatment process, e.g. annealing, the energy dissipation capacity should improve substantially. Moreover, in order to attract the damage and prevent it from spreading through the beam (bracing) and the column (leg), whose replacement is formidable, the connection should work in a ‘sacrificial’ capacity. This, together with making it ‘replaceable,’ will reduce the cost of aftermath repair substantially, while replacing the damaged beam or column, if possible, is very costly. In addition to its high rotational (bending) capacity, at least 6 times those of conventional joints (depending on the connection design), its ‘shear deformation capacity’ is quite considerable, absolutely incomparable with those of its conventional counterparts, which are virtually ‘nil.’ This connection is a ‘self-contained separate entity’ which comprises two parallel attachment plates between which two circular, or else, tubes are laid and fixed through welding, though alternatively the whole combination can be produced by extrusion. In the ‘original version’ of the connection, the two plates are laid in a parallel relation with the axis of bending, whereas in its ‘alternate version,’ they are laid in an orthogonal relation with the axis of bending. Tests carried out on specimens of the two distinct versions of the connection proved all its claimed characteristics, both in shear and bending. In particular, those carried out more recently, not reported in previous papers (OMAE’02-28264 & OMAE’03-37292), were quite revealing with regard to the ‘shear strength’ and the ‘shear deformation capacity’ of the original version (horizontally-laid-tube, HLT, version) of the connection—far beyond what was expected by the authors.


Author(s):  
S. V. Khonsari ◽  
G. L. England ◽  
F. Abazarsa

A new universal structural joint was developed. While in bending it has a high rotational capacity, which can be accompanied by large bending stiffness and strength, in shear, it also has a very high shear deformation capacity, which can again be accompanied with large shear stiffness and strength. While the former characteristic makes it a good candidate for being used as a beam-to-column joint, the latter makes it highly applicable in connecting braces of a braced frame to the frame members. The experimental study carried out previously on this joint, concentrated on the performance of its steel specimens under ‘monotonic’ shear loading as well as that of its aluminium specimens under both ‘monotonic’ and ‘cyclic’ shear loading. The current study, however, comprises the experimental investigation into the behaviour of the mild steel specimens of this joint under ‘monotonic’ and ‘cyclic’ shear loading. As expected, the monotonic shear loading of the specimens of this new joint resulted in great amount of shear deformation, in contrary to basically all currently-used structural connections which lack any appreciable shear deformation capacity. Moreover, the specimens tested under cyclic shear loading also performed very well. The hysteresis loops of these specimens were ‘stable’ and ‘well-rounded’, implying large amount of energy dissipation in each cycle. Such very ductile response of the connections in shear is expected to be exploited in various circumstances in offshore as well as onshore structures to result in a ductile overall behavior of the structure.


2010 ◽  
Vol 163-167 ◽  
pp. 398-405
Author(s):  
San Sheng Dong ◽  
Zi Xue Lei ◽  
Jun Hai Zhao

Based on the pseudo-static test of 6 high-strength RC columns with central reinforcement skeletons, this paper studied their hysterisis performance, degradation of strength and rigidity, and energy dissipation capacity, with the affecting factors analyzed. The result shows that the central reinforcement skeletons can compensate for the low plasticity and brittle failure susceptibility of high-strength concrete so that all the specimens have stable strength, slow rigidity degradation and high energy dissipation capacity at later stage of loading; the larger the core areas the higher the strengths and ductility of the specimens, but slightly faster the degradation of strength and energy dissipation capacity as compared with the specimens with smaller core areas; the spacing of ties, longitudinal reinforcement ratio of core area both influence the strength degradation and energy dissipation capacity of the specimens, but they have little effect on their strengths.


2020 ◽  
Vol 10 (22) ◽  
pp. 8264
Author(s):  
Sang-Woo Kim ◽  
Kil-Hee Kim

This study proposes a relatively simple steel damper with high energy dissipation capacity. Three types of steel dampers were evaluated for structural performance. The first damper with U-shape had two vertical members and a semicircular connecting member for energy dissipation. The second damper with an angled U-shape replaced the connecting member with a horizontal steel member. The last damper with D-shape had a horizontal member added to the U-shaped damper. All the dampers were designed with steel plates on both sides that transmitted external shear force to the energy-dissipating members. To evaluate the structural performance of the dampers, an in-plane cyclic shear force was applied to the specimens. The D-shaped damper showed ductile behavior with excellent energy dissipation capacity after yielding without decreasing in strength during cyclic load. In other words, the D-shaped specimen showed excellent performance, with about 3.5 times the strength of the U-shaped specimen and about 3.8 times the energy dissipation capacity due to the additional horizontal member. Furthermore, the efficient energy dissipation of the proposed D-shaped steel damper was confirmed from the finite element (FE) analytical and experimental results.


2020 ◽  
Vol 23 (10) ◽  
pp. 2057-2069
Author(s):  
Haotian Tao ◽  
Min Mao ◽  
Huifeng Yang ◽  
Weiqing Liu

This article proposes to use the bolted top and seat angles to provide excellent moment resistance and high energy dissipation capacity for glulam beam-to-column connection. Angles are anchored on the glulam beam using the glued-in steel plate technology and connected to the column by anchorage bolts. A theoretical model is presented in this article to evaluate the moment-resistant properties of the connection based on the component method. To validate the accuracy of the theoretical model, several hybrid connections are tested under monotonic and reversed cyclic load. The test results showed that the proposed hybrid connection has a high rotational stiffness and excellent moment resistance. The theoretical results are also consistent with those of the experimental model.


2014 ◽  
Vol 684 ◽  
pp. 195-201
Author(s):  
Zhen Lei ◽  
Yong Wang ◽  
Jun Tong Qu

FRP strength technique can increase the lateral strength of masonry walls, but the effect of the presence of pre-damage in the walls before retrofitted has not been studied. In this study, the experimental results from two half-scale RC-brick masonry walls with opening retrofitted with BFRP composite strips are presented. One wall was initially damaged in shear loading up to its maximum strength, and then repaired with BFRP sheets; another one was directly strengthened with BFRP sheets in the same strengthening configuration. All the walls were subjected to cyclic in-plane shear loading up to failure. Compared to the strengthened walls, the repaired masonry wall has almost the same failure mode and FRP strain rule, and slightly lower lateral strength and deformation capacity as well as energy dissipation capacity.


Author(s):  
Francesca Lecci ◽  
Cecilia Mazzoli ◽  
Cristiana Bartolomei ◽  
Riccardo Gulli

AbstractThis paper investigates the principles that regulate complex stereotomic constructions as a starting point for the design of a new two-dimensional floor structure based on the principles of TIM (Topological Interlocking Materials). These interlocking systems use an assembly of identical Platonic solids which, due to the mutual bearing between adjacent units and the presence of a global peripheral constraint, lock together to form pure geometric shapes. This type of structure offers several advantages such as a high energy dissipation capacity and tolerance towards localised failure, which has made it a popular research topic over the last 30 years. The current research project includes a case study of an assembly of interlocking cubes to create a “flat vault”. The resulting vault design features a striking appearance and its geometry may be manipulated to achieve different two-dimensional solutions, provided certain geometric conditions necessary for the stability of the system are followed.


2014 ◽  
Vol 891-892 ◽  
pp. 3-8
Author(s):  
Zheng Bo Lai ◽  
Cheng Yan ◽  
Adekunle Oloyede

Bone, a hard biological material, possesses a combination of high stiffness and toughness, even though the main basic building blocks of bone are simply mineral platelets and protein molecules. Bone has a very complex microstructure with at least seven hierachical levels. This unique material characteristic attracts great attention, but the deformation mechanisms in bone have not been well understood. Simulation at nanolength scale such as molecular dynamics (MD) is proven to be a powerful tool to investigate bone nanomechanics for developing new artificial biological materials. This study focuses on the ultra large and thin layer of extrafibrillar protein matrix (thickness = ~ 1 nm) located between mineralized collagen fibrils (MCF). Non-collagenous proteins such as osteopontin (OPN) can be found in this protein matrix, while MCF consists mainly of hydroxyapatite (HA) nanoplatelets (thickness = 1.5 4.5 nm). By using molecular dynamics method, an OPN peptide was pulled between two HA mineral platelets with water in presence. Periodic boundary condition (PBC) was applied. The results indicate that the mechanical response of OPN peptide greatly depends on the attractive electrostatics interaction between the acidic residues in OPN peptide and HA mineral surfaces. These bonds restrict the movement of OPN peptide, leading to a high energy dissipation under shear loading.


Author(s):  
Ziad Ahmad Aldrebi

The article discusses the most suitable base isolation bearings from the author's point of view for use in the buildings of old mosques in Syria, which are designed to protect such buildings from the effects of earthquakes that can occur at any time. Especially since many of such buildings have an architectural and cultural value, and are included in the world heritage list of UNESCO. Elastomeric bearings with high energy dissipation capacity (HDRB), elastomeric bearings with lead cores (LDRB), single friction pendulum, double friction pendulum and triple friction pendulum sliding (FPS) bearings are considered. What they consist of, their characteristics. Three, mosques in Syria that are of a great value from the point of view of architecture and cultural heritage are listed and described, and conclusions are drawn.


Sign in / Sign up

Export Citation Format

Share Document