Targeting TJP1 attenuates cell–cell aggregation and modulates chemosensitivity against doxorubicin in leiomyosarcoma

2020 ◽  
Vol 98 (5) ◽  
pp. 761-773
Author(s):  
Eun-Young Lee ◽  
Jung Yeon Yu ◽  
A Rome Paek ◽  
So Hee Lee ◽  
Hyonchol Jang ◽  
...  
Keyword(s):  
1995 ◽  
Vol 108 (12) ◽  
pp. 3839-3853 ◽  
Author(s):  
F. Monier-Gavelle ◽  
J.L. Duband

Dispersion of neural crest cells and their ultimate regroupment into peripheral ganglia are associated with precisely coordinated regulations both in time and space of the expression and function of cell adhesion receptors. In particular, the disappearance of N-cadherin from the cell surface at the onset of migration and its reexpression during cell aggregation suggest that, during migration, N-cadherin expression is repressed in neural crest cells. In the present study, we have analyzed in vitro the mechanism of control of N-cadherin expression and function in migrating neural crest cells. Although these cells moved as a dense population, each individual did not establish extensive and permanent intercellular contacts with its neighbors. However, cells synthesized and expressed mature N-cadherin molecules at levels comparable to those found in cells that exhibit stable intercellular contacts, but in contrast to them, the bulk of N-cadherin molecules was not connected with the cytoskeleton. We next determined which intracellular events are responsible for the instability of the N-cadherin junctions in neural crest cells using various chemical agents known to affect signal transduction processes. Agents that block a broad spectrum of serine-threonine kinases (6-dimethylaminopurine, H7 and staurosporine) or that affect selectively protein kinases C (bisindolylmaleimide and sphingosine), inhibitors of protein tyrosine kinases (erbstatin, herbimycin A, and tyrphostins), and inhibitors of phosphatases (vanadate) all restored tight cell-cell associations among neural crest cells, accompanied by a slight increase in the overall cellular content of N-cadherin and its accumulation to the regions of intercellular contacts. The effect of the kinase and phosphatase blockers was inhibitable by agents known to affect protein synthesis (cycloheximide) and exportation (brefeldin A), indicating that the restored cell-cell contacts were mediated chiefly by an intracellular pool of N-cadherin molecules recruited to the membrane. Finally, N-cadherin molecules were constitutively phosphorylated in migrating neural crest cells, but their level and state of phosphorylation were apparently not modified in the presence of kinase and phosphatase inhibitors. These observations therefore suggest that N-cadherin-mediated cell-cell interactions are not stable in neural crest cells migrating in vitro, and that they are under the control of a complex cascade of intracellular signals involving kinases and phosphatases and probably elicited by surface receptors.


Author(s):  
W. Mark Saltzman

The external surface of the cell consists of a phospholipid bilayer which carries a carbohydrate-rich coat called the glycocalyx; ionizable groups within the glycocalyx, such as sialic acid (N-acetyl neuraminate), contribute a net negative charge to the cell surface. Many of the carbohydrates that form the glycocalyx are bound to membrane-associated proteins. Each of these components— phospholipid bilayer, carbohydrate-rich coat, membrane-associated protein—has distinct physicochemical characteristics and is abundant. Plasma membranes contain ∼50% protein, ∼45% lipid, and ∼5% carbohydrate by weight. Therefore, each component influences cell interactions with the external environment in important ways. Cells can become attached to surfaces. The surface of interest may be geometrically complex (for example, the surface of another cell, a virus, a fiber, or an irregular object), but this chapter will focus on adhesion between a cell and a planar surface. The consequences of cell–cell adhesion are considered further in Chapter 8 (Cell Aggregation and Tissue Equivalents) and Chapter 9 (Tissue Barriers to Molecular and Cellular Transport). The consequences of cell–substrate adhesion are considered further in Chapter 7 (Cell Migration) and Chapter 12 (Cell Interactions with Polymers). Since the growth and function of many tissue-derived cells required attachment and spreading on a solid substrate, the events surrounding cell adhesion are fundamentally important. In addition, the strength of cell adhesion is an important determinant of the rate of cell migration, the kinetics of cell–cell aggregation, and the magnitude of tissue barriers to cell and molecule transport. Cell adhesion is therefore a major consideration in the development of methods and materials for cell delivery, tissue engineering, and tissue regeneration. The most stable and versatile mechanism for cell adhesion involves the specific association of cell surface glycoproteins, called receptors, and complementary molecules in the extracellular space, called ligands. Ligands may exist freely in the extracellular space, they may be associated with the extracellular matrix, or they may be attached to the surface of another cell. Cell–cell adhesion can occur by homophilic binding of identical receptors on different cells, by heterophilic binding of a receptor to a ligand expressed on the surface of a different cell, or by association of two receptors with an intermediate linker. Cell–matrix adhesion usually occurs by heterophilic binding of a receptor to a ligand attached to an insoluble element of the extracellular matrix.


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Vida Ho ◽  
Philippe Herman-Bausier ◽  
Christopher Shaw ◽  
Karen A. Conrad ◽  
Melissa C. Garcia-Sherman ◽  
...  

ABSTRACT The human fungal commensal Candida albicans can become a serious opportunistic pathogen in immunocompromised hosts. The C. albicans cell adhesion protein Als1p is a highly expressed member of a large family of paralogous adhesins. Als1p can mediate binding to epithelial and endothelial cells, is upregulated in infections, and is important for biofilm formation. Als1p includes an amyloid-forming sequence at amino acids 325 to 331, identical to the sequence in the paralogs Als5p and Als3p. Therefore, we mutated Val326 to test whether this sequence is important for activity. Wild-type Als1p (Als1pWT) and Als1p with the V326N mutation (Als1pV326N) were expressed at similar levels in a Saccharomyces cerevisiae surface display model. Als1pV326N cells adhered to bovine serum albumin (BSA)-coated beads similarly to Als1pWT cells. However, cells displaying Als1pV326N showed visibly smaller aggregates and did not fluoresce in the presence of the amyloid-binding dye Thioflavin-T. A new analysis tool for single-molecule force spectroscopy-derived surface mapping showed that statistically significant force-dependent Als1p clustering occurred in Als1pWT cells but was absent in Als1pV326N cells. In single-cell force spectroscopy experiments, strong cell-cell adhesion was dependent on an intact amyloid core sequence on both interacting cells. Thus, the major adhesin Als1p interacts through amyloid-like β-aggregation to cluster adhesin molecules in cis on the cell surface as well as in trans to form cell-cell bonds. IMPORTANCE Microbial cell surface adhesins control essential processes such as adhesion, colonization, and biofilm formation. In the opportunistic fungal pathogen Candida albicans, the agglutinin-like sequence (ALS) gene family encodes eight cell surface glycoproteins that mediate adherence to biotic and abiotic surfaces and cell-cell aggregation. Als proteins are critical for commensalism and virulence. Their activities include attachment and invasion of endothelial and epithelial cells, morphogenesis, and formation of biofilms on host tissue and indwelling medical catheters. At the molecular level, Als5p-mediated cell-cell aggregation is dependent on the formation of amyloid-like nanodomains between Als5p-expressing cells. A single-site mutation to valine 326 abolishes cellular aggregation and amyloid formation. Our results show that the binding characteristics of Als1p follow a mechanistic model similar to Als5p, despite its differential expression and biological roles.


Blood ◽  
1998 ◽  
Vol 91 (12) ◽  
pp. 4632-4644 ◽  
Author(s):  
Juan M. Serrador ◽  
Marta Nieto ◽  
José L. Alonso-Lebrero ◽  
Miguel A. del Pozo ◽  
Javier Calvo ◽  
...  

Abstract Chemokines as well as the signaling through the adhesion molecules intercellular adhesion molecule (ICAM)-3 and CD43 are able to induce in T lymphocytes their switching from a spherical to a polarized motile morphology, with the formation of a uropod at the rear of the cell. We investigated here the role of CD43 in the regulation of T-cell polarity, CD43-cytoskeletal interactions, and lymphocyte aggregation. Pro-activatory anti-CD43 monoclonal antibody (MoAb) induced polarization of T lymphocytes with redistribution of CD43 to the uropod and the CCR2 chemokine receptor to the leading edge of the cell. Immunofluorescence analysis showed that all three ezrin-radixin-moesin (ERM) actin-binding proteins localized in the uropod of both human T lymphoblasts stimulated with anti-CD43 MoAb and tumor-infiltrating T lymphocytes. Radixin localized at the uropod neck, whereas ezrin and moesin colocalized with CD43 in the uropod. Biochemical analyses showed that ezrin and moesin coimmunoprecipitated with CD43 in T lymphoblasts. Furthermore, in these cells, the CD43-associated moesin increased after stimulation through CD43. The interaction of moesin and ezrin with CD43 was specifically mediated by the cytoplasmic domain of CD43, as shown by precipitation of both ERM proteins with a GST-fusion protein containing the CD43 cytoplasmic tail. Videomicroscopy analysis of homotypic cell aggregation induced through CD43 showed that cellular uropods mediate cell-cell contacts and lymphocyte recruitment. Immunofluorescence microscopy performed in parallel showed that uropods enriched in CD43 and moesin localized at the cell-cell contact areas of cell aggregates. The polarization and homotypic cell aggregation induced through CD43 was prevented by butanedione monoxime, indicating the involvement of myosin cytoskeleton in these phenomena. Altogether, these data indicate that CD43 plays an important regulatory role in remodeling T-cell morphology, likely through its interaction with actin-binding proteins ezrin and moesin. In addition, the redistribution of CD43 to the uropod region of migrating lymphocytes and during the formation of cell aggregates together with the enhancing effect of anti-CD43 antibodies on lymphocyte cell recruitment suggest that CD43 plays a key role in the regulation of cell-cell interactions during lymphocyte traffic.


2000 ◽  
Vol 349 (1) ◽  
pp. 159-167 ◽  
Author(s):  
Yutaka SHIMOYAMA ◽  
Gozoh TSUJIMOTO ◽  
Masaki KITAJIMA ◽  
Michiya NATORI

We identified three novel human type-II classic cadherins, cadherin-7, -9 and -10, by cDNA cloning and sequencing, and confirmed that they interact with catenins and function in cell-cell adhesion as do other classic cadherins. Cell-cell binding activities of the eight human type-II classic cadherins, including the three new molecules, were evaluated by long-term cell-aggregation experiments using mouse L fibroblast clones transfected with the individual cadherins. The experiments indicated that all the type-II cadherins appeared to possess similar binding strength, which was virtually equivalent to that of E-cadherin. We next examined the binding specificities of the type-II cadherins using the mixed cell-aggregation assay. Although all of the type-II cadherins exhibited binding specificities distinct from that of E-cadherin, heterophilic interactions ranging from incomplete to complete were frequently observed among them. The combinations of cadherin-6 and -9, cadherin-7 and -14, cadherin-8 and -11, and cadherin-9 and -10 interacted in a complete manner, and in particular cadherin-7 and -14, and cadherin-8 and -11 showed an indistinguishable binding specificity against other cadherin subclasses, at least in this assay system. Although these data were obtained from an in vitro study, they should be useful for understanding cadherin-mediated mechanisms of development, morphogenesis and cell-cell interactions in vivo.


1985 ◽  
Vol 230 (2) ◽  
pp. 321-327 ◽  
Author(s):  
S Srimal ◽  
D T Dorai ◽  
M Somasundaran ◽  
B K Bachhawat ◽  
T Miyata

The present paper describes the purification and function of a haemagglutinin from the amoebocyte lysate of the horseshoe crab Carcinoscorpius rotundicauda. The purified protein consisted of a single subunit of Mr 24 000 and agglutinated human blood-group-A+ erythrocytes. Its haemagglutinin activity was inhibited by purified lysate, coagulogen, but not by sugars. The haemagglutinin differed immunologically and in activity from the sialic-acid-binding lectin carcinoscorpin present in the haemolymph. It caused aggregation of forma-fixed amoebocytes, and on the basis of this observation its role in cell-cell adhesion is proposed. This new haemagglutinin promotes cell-cell aggregation in amoebocytes in a manner that shares some similarities with thrombospondin-mediated platelet aggregation in vertebrates [Jaffe, Leuang, Nachman, Levin & Moseher (1981) Nature (London) 295, 246-248].


2007 ◽  
Vol 189 (14) ◽  
pp. 5193-5202 ◽  
Author(s):  
Lisa U. Magnusson ◽  
Bertil Gummesson ◽  
Predrag Joksimović ◽  
Anne Farewell ◽  
Thomas Nyström

ABSTRACT The recent discovery that the protein DksA acts as a coregulator of genes controlled by ppGpp led us to investigate the similarities and differences between the relaxed phenotype of a ppGpp-deficient mutant and the phenotype of a strain lacking DksA. We demonstrate that the absence of DksA and ppGpp has similar effects on many of the observed phenotypes but that DksA and ppGpp also have independent and sometimes opposing roles in the cell. Specifically, we show that overexpression of DksA can compensate for the loss of ppGpp with respect to transcription of the promoters P uspA , P livJ , and P rrnBP1 as well as amino acid auxotrophy, cell-cell aggregation, motility, filamentation, and stationary phase morphology, suggesting that DksA can function without ppGpp in regulating gene expression. In addition, ppGpp and DksA have opposing effects on adhesion. In the course of our analysis, we also discovered new features of the relaxed mutant, namely, defects in cell-cell aggregation and motility.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Kerry M Goodman ◽  
Masahito Yamagata ◽  
Xiangshu Jin ◽  
Seetha Mannepalli ◽  
Phinikoula S Katsamba ◽  
...  

Sidekick (Sdk) 1 and 2 are related immunoglobulin superfamily cell adhesion proteins required for appropriate synaptic connections between specific subtypes of retinal neurons. Sdks mediate cell-cell adhesion with homophilic specificity that underlies their neuronal targeting function. Here we report crystal structures of Sdk1 and Sdk2 ectodomain regions, revealing similar homodimers mediated by the four N-terminal immunoglobulin domains (Ig1–4), arranged in a horseshoe conformation. These Ig1–4 horseshoes interact in a novel back-to-back orientation in both homodimers through Ig1:Ig2, Ig1:Ig1 and Ig3:Ig4 interactions. Structure-guided mutagenesis results show that this canonical dimer is required for both Sdk-mediated cell aggregation (via trans interactions) and Sdk clustering in isolated cells (via cis interactions). Sdk1/Sdk2 recognition specificity is encoded across Ig1–4, with Ig1–2 conferring the majority of binding affinity and differential specificity. We suggest that competition between cis and trans interactions provides a novel mechanism to sharpen the specificity of cell-cell interactions.


1994 ◽  
Vol 72 (03) ◽  
pp. 450-456 ◽  
Author(s):  
Norma Maugeri ◽  
Virgilio Evangelista ◽  
Antonio Celardo ◽  
Giuseppe Dell’Elba ◽  
Nicola Martelli ◽  
...  

SummaryIn PMN/platelet suspensions stimulated by fMLP giant mixed aggregates are formed and TxB2 and LTC4 are synthesized as the result of the cooperation in the arachidonic acid (AA) metabolism during cell/cell contact. PMN-derived cathepsin G induced the expression of P-selectin on platelet surface. GE12, an antibody against P-selectin, significantly reduced mixed cell aggregates. GE12 did not affect platelet aggregation induced by PMN-derived supernatants, indicating that the inhibitory effect of GE12 on mixed cell aggregation depends on inhibition of PMN/platelet adhesion. GE12 significantly reduced TxB2 and LTC4 production in PMN/platelet mixed cell suspensions stimulated by fMLP. As previously reported, synthesis of 3H-TxB2 in 3H-AA-labeled PMN/unlabeled platelets indicates that platelets utilize 3H-AA from PMN. 3H-LTC4 production in unlabeled PMN/3H-AA-labeled platelets indicates that bidirectional routes are utilized in this system for LTC4 synthesis. GE12 significantly reduced 3H-TxB2 and 3H-LTC4 synthesis. These results show that cathepsin G released by activated PMN induces the expression of P-selectin on platelet membrane: this adhesive glycoprotein modulates cell-cell contact and transcellular metabolism of AA.


Sign in / Sign up

Export Citation Format

Share Document