scholarly journals Do lower nitrogen fertilization levels require breeding of different types of cultivars in triticale?

Author(s):  
Jan E. Neuweiler ◽  
Johannes Trini ◽  
Hans Peter Maurer ◽  
Tobias Würschum

Abstract Key message The comparably low genotype-by-nitrogen level interaction suggests that selection in early generations can be done under high-input conditions followed by selection under different nitrogen levels to identify genotypes ideally suited for the target environment. Abstract Breeding high-yielding, nitrogen-efficient crops is of utmost importance to achieve greater agricultural sustainability. The aim of this study was to evaluate nitrogen use efficiency (NUE) of triticale, investigate long-term genetic trends and the genetic architecture, and develop strategies for NUE improvement by breeding. For this, we evaluated 450 different triticale genotypes under four nitrogen fertilization levels in multi-environment field trials for grain yield, protein content, starch content and derived indices. Analysis of temporal trends revealed that modern cultivars are better in exploiting the available nitrogen. Genome-wide association mapping revealed a complex genetic architecture with many small-effect QTL and a high level of pleiotropy for NUE-related traits, in line with phenotypic correlations. Furthermore, the effect of some QTL was dependent on the nitrogen fertilization level. High correlations of each trait between N levels and the rather low genotype-by-N-level interaction variance showed that generally the same genotypes perform well over different N levels. Nevertheless, the best performing genotype was always a different one. Thus, selection in early generations can be done under high nitrogen fertilizer conditions as these provide a stronger differentiation, but the final selection in later generations should be conducted with a nitrogen fertilization as in the target environment.

1972 ◽  
Vol 44 (1) ◽  
pp. 12-18
Author(s):  
E. I. Kivi ◽  
S. Hovinen

The Barley Committee of the Laboratory of Brewing in Helsinki, carried out a series of field trials from 1967 to 1969 to investigate the effect of the timing and the quantity of nitrogen fertilization on properties of malting barleys grown in Finland. This paper deals with a part of this project. The varieties were the two-rowed brewing barleys Ingrid, Arvo and Karri and the six-rowed enzyme barley Pirkka. As a basic fertilizing 59 kg phosphorus and 99 kg potassium per hectare were administered. Varying nitrogen levels (30 or 60 kg N per hectare) were given as saltpetre at harrowing (early) or on the sprouts (late). The nitrogen given early increased the yield in all varieties more than the late spreading. The treatment on sprouts increased the protein content of the yield. The difference in protein contents between the two spreading times was as big as the difference between the two nitrogen doses given at the same point of time. Ingrid and Pirkka reacted very sensitively to the late nitrogen fertilizing. Karri was least sensitive to the changes in nitrogen supply. The yearly fluctuations of the protein contents were bigger than the differences between varieties in each year. The order of varieties in regard to the protein content was the same in all trial years: Pirkka, Ingrid, Arvo and Karri. Besides the cultivation technique, e.g. placement of fertilizers, attention must be paid to the sensitivity of the varieties in increasing their protein content under changeable conditions.


2017 ◽  
Vol 38 (3) ◽  
pp. 1617
Author(s):  
Clésio Dos Santos Costa ◽  
Rosane Cláudia Rodrigues ◽  
Ricardo Alves de Araújo ◽  
Magno José Duarte Cândido ◽  
Francisco Naysson De Sousa Santos ◽  
...  

This study aimed to evaluate the agronomic characteristics and nutritional value of Massai grass (Megathyrsus maximus ‘Massai’) pastures fertilized with different nitrogen levels and subjected to deferred grazing. A completely randomized experimental design (CRD) was adopted, with including five nitrogen levels (zero, 100, 200, 300, and 400 kg ha?1), and five replications (plots). The degradability trial used a CRD including a 6 × 5 factorial arrangement, consisting of six rumen-incubation times (6, 24, 48, 60, 84, and 96 h) and five levels of nitrogen in different plots. One fistulated sheep, with a live weight of 60 kg, was used in the experiment. Total herbage biomass, dead herbage biomass, and height showed a quadratic response to nitrogen fertilization levels of 100 to 200 kg ha-1 resulted in greater tillering. Protein and dry matter content increased linearly with nitrogen fertilization level, leading to increase in fibrous components. The increase in NDF and ADF contents might be a consequence of the reduction in NCE, and the high flowering rate of the grass, owing likely to the reduction in metabolism of the grass in an attempt to extend its lifetime. Nitrogen levels of 300 kg ha?1 or higher affected the productive characteristics positively, whereas the chemical characteristics were negatively affected.


2013 ◽  
Vol 59 (No. 2) ◽  
pp. 80-88 ◽  
Author(s):  
X. Zhang ◽  
G. Huang ◽  
X. Bian ◽  
Q. Zhao

A pot experiment using root separation technique was conducted to further understand the effect of root interaction played in intercropping system under different nitrogen levels. The results showed that root interaction and increasing nitrogen application increased the green leaf area per plant and chlorophyll content of soybean, but their effects gradually decreased with increasing nitrogen fertilization level. Root interaction and increasing nitrogen application can improve photosynthetic characteristics of soybean, but root interaction only had a significant effect under low nitrogen level. The number of bacteria, fungi, actinomycetes and Azotobacteria was also obviously affected by root interaction and nitrogen fertilization, and the number of Azotobacteria presented a changing trend of first increased and then decreased with increasing nitrogen fertilization level. Root interaction and increasing nitrogen application improved soybean yield and its components, but their effects gradually decreased with increasing nitrogen fertilization level. The root activity of soybean was obviously affected by root interaction, and was significantly positively correlated with green leaf area per plant, chlorophyll content, photosynthetic rate and economic yield per plant. Our results indicate that the advantage effect of root interaction and increasing nitrogen application will be partially inhibited with an increasing nitrogen fertilization level.


2014 ◽  
Vol 28 (1) ◽  
pp. 225-232 ◽  
Author(s):  
Matthew Cutulle ◽  
Jeffrey Derr ◽  
David McCall ◽  
Adam Nichols ◽  
Brandon Horvath

Tall fescue is a commonly used turfgrass in the temperate and transition zone areas of the United States. During hot, humid summers, tall fescue is under stress and is susceptible toRhizoctonia solani(brown patch) infection, causing turf thinning, leading to encroachment from weeds, such as bermudagrass. Field trials were established to evaluate the effect of mowing height and fertility programs on disease severity and bermudagrass encroachment in tall fescue. Mowing at 10 cm resulted in less bermudagrass encroachment than did a 6-cm mowing height. Increasing the nitrogen fertilization level from 49 to 171 and 220 kg N ha−1generally led to more bermudagrass encroachment at the 6-cm, but not the 10-cm, mowing height. Plots receiving 220 kg N ha−1annually at the 6-cm mowing height had the most brown patch. Turfgrass cover was greatest in plots mowed at 10 cm and receiving 220 kg N ha−1annually.


2020 ◽  
Vol 15 (1) ◽  
pp. 711-720
Author(s):  
Janetta Niemann ◽  
Justyna Szwarc ◽  
Jan Bocianowski ◽  
Dorota Weigt ◽  
Marek Mrówczyński

AbstractRapeseed (Brassica napus) can be attacked by a wide range of pests, for example, cabbage root fly (Delia radicum) and cabbage aphid (Brevicoryne brassicae). One of the best methods of pest management is breeding for insect resistance in rapeseed. Wild genotypes of Brassicaceae and rapeseed cultivars can be used as a source of resistance. In 2017, 2018, and 2019, field trials were performed to assess the level of resistance to D. radicum and B. brassicae within 53 registered rapeseed cultivars and 31 interspecific hybrid combinations originating from the resources of the Department of Genetics and Plant Breeding of Poznań University of Life Sciences (PULS). The level of resistance varied among genotypes and years. Only one hybrid combination and two B. napus cultivars maintained high level of resistance in all tested years, i.e., B. napus cv. Jet Neuf × B. carinata – PI 649096, Galileus, and Markolo. The results of this research indicate that resistance to insects is present in Brassicaceae family and can be transferred to rapeseed cultivars. The importance of continuous improvement of rapeseed pest resistance and the search for new sources of resistance is discussed; furthermore, plans for future investigations are presented.


2013 ◽  
Vol 85 (1) ◽  
pp. 371-377 ◽  
Author(s):  
Marcos F Silva ◽  
Edson M. V Porto ◽  
Dorismar D Alves ◽  
Cláudio M.T Vitor ◽  
Ignacio Aspiazú

This study aims to evaluate the morphogenetic characteristics of three cultivars of Brachiaria brizantha subjected to nitrogen fertilization. The design was a randomized block in factorial arrangement 4x3; three cultivars of B. brizantha - Marandu, Piatã, Xaraés and four nitrogen levels - 0, 80, 160 and 240 kg/ha, with three replications. The experimental units consisted of plastic pots filled with 5 dm3 of soil. Thereupon the establishment fertilization, varieties were sowed directly in the pots, leaving, after thinning, five plants per pot. Forty-five days after planting, it was done a standardization cut at 10 cm tall. Nitrogen levels were distributed according to the treatments, divided in three applications. The morphogenetic characteristics were evaluated in three tillers per sampling unit and data were submitted to analysis of variance and regression. For all evaluated characteristics there was no interaction between factors cultivar and nitrogen levels, verifying only the effects of nitrogen on the variables leaf appearance rate and phyllochron. The dose 240 kg/ha of N corresponds to the greater leaf appearance rate. Cultivar Marandu shows the higher leaf blade: pseudostem and ratio of leaf elongation rate and elongation pseudostem, which favors higher forage quality.


Plant Disease ◽  
2008 ◽  
Vol 92 (8) ◽  
pp. 1197-1200 ◽  
Author(s):  
V. N. Bilgi ◽  
C. A. Bradley ◽  
S. D. Khot ◽  
K. F. Grafton ◽  
J. B. Rasmussen

Fusarium root rot of dry bean (Phaseolus vulgaris), caused by Fusarium solani f. sp. phaseoli, is a major yield-limiting disease in North Dakota and Minnesota. Although a few sources of partial resistance are available, most commercial cultivars grown in this region are susceptible, especially in the red kidney bean market class. This study evaluated three methods of screening for resistance to Fusarium root rot. A sand-cornmeal inoculum layer method, spore suspension method, and paper towel method were used to evaluate 11 dry bean genotypes for resistance to Fusarium root rot under growth-chamber conditions. These same genotypes were also evaluated in field trials at Fargo, ND, and Park Rapids and Perham, MN, in 2005. In all trials, the small red genotype VAX 3 was found to have a consistently high level of resistance to Fusarium root rot and could be used as a source of resistance by dry bean breeders. Correlation analyses between field and growth-chamber root rot ratings indicated that all three growth-chamber methods had significantly (P ≤ 0.05) positive correlations with field results from Perham and Fargo, which suggests that all three methods could be used to screen germplasm efficiently for resistance to Fusarium root rot.


Irriga ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 29-41 ◽  
Author(s):  
William José Dellabiglia ◽  
Glauber José de Castro Gava ◽  
Adolfo Bergamo Arlanch ◽  
Roberto Lyra Villas Boas ◽  
Heitor Cantarella ◽  
...  

PRODUTIVIDADE DE CANA-DE-AÇÚCAR FERTIRRIGADA COM DOSES DE N E INOCULADAS COM BACTÉRIAS DIAZOTRÓFICAS*     WILLIAM JOSÉ DELLABIGLIA¹; GLAUBER JOSÉ DE CASTRO GAVA²; ADOLFO BERGAMO ARLANCH3; ROBERTO LYRA VILLAS BOAS4; HEITOR CANTARELLA5 E RAFFAELLA ROSSETTO6     * Artigo extraído da Dissertação do primeiro autor 1 Faculdade de Tecnologia de Botucatu (FATEC-BT), Av. José Ítalo Bacchi, s/n, Botucatu – SP – Brasil. E-mail: [email protected] 2 Pesquisador, Instituto Agronômico de Campinas (IAC), Rodovia SP 304, Km 304, Jaú, SP - Brasil. E-mail: [email protected] 3 Doutorando do Programa de Pós-Graduação em Irrigação e Drenagem, Universidade Estadual Paulista ‘‘Júlio Mesquita Filho’’ - UNESP/FCA, Rua José Barbosa de Barros, 1780, Botucatu, SP - Brasil. E-mail: [email protected] 4 Professor Doutor do Departamento de Recursos Naturais/Ciência do Solo, Universidade Estadual Paulista ‘‘Júlio Mesquita Filho’’ - UNESP/FCA, Rua José Barbosa de Barros, 1780, Botucatu, SP - Brasil. E-mail: [email protected] 5 Pesquisador, Instituto Agronômico de Campinas (IAC), Av. Barão de Itapura, 1481, Campinas, SP – Brasil. E-mail: [email protected] 6 Pesquisadora, Agência Paulista de Tecnologia (APTA), Rodovia SP 127, km 30, Piracicaba, SP – Brasil. E-mail: [email protected]     1 RESUMO   O objetivo deste trabalho foi avaliar a eficiência da inoculação de bactérias diazotróficas e da fertilização nitrogenada na produtividade e qualidade tecnológica da cana-de-açúcar (cana-planta), nos manejos: irrigado por gotejamento subsuperficial e de sequeiro.  O experimento foi conduzido na Unidade de Pesquisa Hélio de Moraes, do IAC, no município de Jaú, SP, (22°17’ S 48°34’ O, em Latossolo Vermelho). A variedade de cana-de-açúcar foi a RB92579. O delineamento experimental foi em blocos casualizados, composto por fatorial de 2 manejos de irrigação: irrigado (I) e não irrigado (NI), 2 manejos de inoculação: com inoculação (Inoc) e sem inoculação (Não inoc) com bactérias diazotróficas (BDs); e com 4 níveis de disponibilidade de nitrogênio (0, 70, 140 e 210 kg ha-1 de N), compondo assim 16 tratamentos com 4 repetições. O experimento teve duração de 365 dias, quando então foram realizadas as análises tecnológicas e determinou-se a produtividade de colmos (TCH) e de açúcar (TPH). A cana-de-açúcar elevou sua produtividade com a elevação das doses de nitrogênio. Nos tratamentos irrigados essa elevação foi maior comparando-se com os tratamentos não irrigados.   Palavras-chave: Saccharum spp.; gotejamento subsuperficial; adubação nitrogenada; fixação biológica do nitrogênio.     DELLABIGLIA, W. J.; GAVA, G. J. C.; ARLANCH, A. B.; BOAS, R. L. V.; CANTARELLA, H.; ROSSETTO, R. SUGARCANE YIELD FERTIGATION MANAGEMENT WITH DOSES OF N AND INOCULATED WITH DIAZOTROPHIC BACTERIA 2 ABSTRACT   The objective of this study was to evaluate the efficiency of inoculation with diazotrophic bacteria and nitrogen fertilization on yield and technological quality of sugarcane (cane plant), in the following managements: irrigated by subsurface drip and rainfed. The experiment was conducted at Hélio de Moraes Research Unit, of IAC in the municipality of Jaú, SP, (22 ° 17 'S 48 ° 34' O, Rhodic). The variety of sugarcane was RB92579. The experimental design was randomized blocks, composed by factorial of two irrigation management systems: irrigated (I) and non-irrigated (NI); and two-inoculation managements: with inoculation (Inoc) and without inoculation (No inoc) with diazotrophic bacterias (BDs); and 4 availability levels of nitrogen (0, 70, 140 and 210 kg ha-1 de N),  thus forming 16 treatments with 4 replications. The experiment lasted 365 days when then technological analysis was performed and determined sugarcane stalk yield (TCH) and sugar yield (TPH). The sugarcane raised its productivity with rising nitrogen levels. In irrigated treatments this increase was higher compared with non-irrigated treatments.   Keywords: Saccharum spp., subsurface drip, nitrogen fertilization, nitrogen biological fixation.  


2013 ◽  
Vol 35 (1) ◽  
pp. 61-68 ◽  
Author(s):  
Krystyna Elkner

Empty cavities were found already in very young cucumber fruits with diameter 1.5 cm. As the fruit develops the empty cavities augment and the number of fruits showing this defect increases. Low soil moisture and high nitrogen fertilization favour the formation of empty cavities. Their origination and changes were traced with anatomical methods in the course of fruit development. As a most plausible cause of their origination the author considers the enlargement of only part of the cells of the suture between the two (or three) carples. Due to this uneven enlargement of neighbouring cells strong mechanical tension probably arises amoung them, leading to the formation of ruptures separating these cells, consequently causing the separation of the carpel edges. Besides that, some of the cells of the suture which have markedly enlarged, often burst which also contributes to the formation of an empty cavity and enlarges its dimensions.


2022 ◽  
Vol 354 (11-12) ◽  
pp. 129-133
Author(s):  
A. Yu. Kekalo

Protecting wheat seed from phytopathogens is a popular topic for plant breeders. The objects requiring close attention and control on wheat are smut infections, pathogens of root rot. And if the pathogens of smut we have learned to fight quite effectively with, then microorganisms that infect underground parts of plants are controlled with less success and many questions in the system of protection against them remain controversial. The issue of reducing the pesticide load on agrocenoses, starting with the protection of seeds, also remains relevant. The article presents the results of field trials of means of protecting spring wheat seeds from root rot in 2019–2020, carried out within the framework of the state assignment at the Kurgan SRIA — branch of FSBSI UrFASRC, according to generally accepted methods. The aim of the research was to assess the biological, economic efficiency of the combined use of a chemical seed dressing agent and a biofungicide based on Bacillus subtilis in protecting wheat from soil-seed infections, to determine the competitiveness of an ecologized method of protecting seeds (reduced consumption rate of a chemical seed dressing agent in combination with biological fungicide). The obtained research results indicate that with a high level of damage to wheat by root rot (Fusarium, B. sorokiniana), the use of seed treatment with the studied preparations ensured the preservation of 10–12% of the yield, more efficiency was noted in the variants with the Oplot 0.5 l/t and the Oplot 0.3 l/t + Nodix Premium 0.3 l/t . The technical effectiveness of fungicides against wheat root rot ranged 44% for Nodix Premium to 85–86% for chemical protection and mixed use. An environmentally friendly method of protecting wheat seeds, which consists in using a 40% lower rate of a chemical dressing agent with a biopesticide, turned out to be competitive.


Sign in / Sign up

Export Citation Format

Share Document