Machining β-titanium alloy under carbon dioxide snow and micro-lubrication: a study on tool deflection, energy consumption, and tool damage

2018 ◽  
Vol 97 (9-12) ◽  
pp. 4195-4208 ◽  
Author(s):  
Asif Iqbal ◽  
Dirk Biermann ◽  
Hussain Abbas ◽  
Khalid A. Al-Ghamdi ◽  
Maximilian Metzger
Author(s):  
Asif Iqbal ◽  
Dirk Biermann ◽  
Hussein M Ali ◽  
Juliana Zaini ◽  
Maximilian Metzger

Finding sustainable ways of machining exotic materials is gaining more and more importance in the manufacturing industry. Application of advanced measuring instruments for quantifying performance measures is a crucial requirement for making machining processes viable. The presented work aims to ameliorate machining of a high-strength β-titanium alloy using information from measurements of key responses, such as cutting energy consumption, tool deflection, and tool damage. Acoustic emission data and tool’s acceleration data are utilized to work out the magnitudes of energy consumed and deflection undergone by the tool, respectively. The article focuses on quantifying the effects of tool’s inertia, strength of work material, and two cutting parameters on the aforementioned responses. A total of 54 continuous cutting experiments are performed in which a fixed volume of material per experimental run is removed. Tool deflection method helped to determine the significant effects of varying tool inertia, work material strength, and cutting speed on the machining process. Likewise, acoustic emission method highlighted the strong effects of material strength and cutting speed caused on the cutting energy consumption. The effect of feed rate is found to be significant regarding tool wear only. Finally, the tool wear data are tested for correlation against the corresponding data sets of the other two responses. It is found that both tool deflection and cutting energy possess strong uphill relationships with tool wear.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1999
Author(s):  
Guanyong Sun ◽  
Bin Li ◽  
Hanjie Guo ◽  
Wensheng Yang ◽  
Shaoying Li ◽  
...  

Carbon included in coke and coal was used as a reduction agent and fuel in blast furnace (BF) ironmaking processes, which released large quantities of carbon dioxide (CO2). Minimizing the carbon consumption and CO2 output has always the goal of ironmaking research. In this paper, the reduction reactions of iron oxides by carbon, the gasification reaction of carbon by CO2, and the coupling reactions were studied by thermodynamic functions, which were derived from isobaric specific heat capacity. The reaction enthalpy at 298 K could not represent the heat value at the other reaction temperature, so the certain temperature should be confirmed by Gibbs frees energy and gas partial pressure. Based on Hess’ law, the energy consumption of the ironmaking process by carbon was calculated in detail. The decrease in the reduction temperature of solid metal iron has been beneficial in reducing the sensible heat required. When the volume ratio of CO to CO2 in the top gas of the furnace was given as 1.1–1.5, the coupling parameters of carbon gasification were 1.06–1.28 for Fe2O3, 0.71–0.85 for Fe3O4, 0.35–0.43 for FeO, respectively. With the increase in the coupling parameters, the volume fraction of CO2 decreased, and energy consumption and CO2 output increased. The minimum energy consumption and CO2 output of liquid iron production were in the reduction reactions with only CO2 generated, which were 9.952 GJ/t and 1265.854 kg/t from Fe2O3, 9.761 GJ/t and 1226.799 kg/t from Fe3O4, 9.007 GJ/t and 1107.368 kg/t from FeO, respectively. Compared with the current energy consumption of 11.65 GJ/t hot metal (HM) and CO2 output of 1650 kg/tHM of BF, the energy consumption and CO2 of ironmaking by carbon could reach lower levels by decreasing the coupled gasification reactions, lowering the temperature needed to generate solid Fe and adjusting the iron oxides to improve the iron content in the raw material. This article provides a simplified calculation method to understand the limit of energy consumption and CO2 output of ironmaking by carbon reduction iron oxides.


Procedia CIRP ◽  
2021 ◽  
Vol 98 ◽  
pp. 175-180
Author(s):  
Navneet Khanna ◽  
Prassan Shah ◽  
Jwalant Wadhwa ◽  
Anjali Pitroda ◽  
Julius Schoop ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2538
Author(s):  
Praveen K. Cheekatamarla

Electrical and thermal loads of residential buildings present a unique opportunity for onsite power generation, and concomitant thermal energy generation, storage, and utilization, to decrease primary energy consumption and carbon dioxide intensity. This approach also improves resiliency and ability to address peak load burden effectively. Demand response programs and grid-interactive buildings are also essential to meet the energy needs of the 21st century while addressing climate impact. Given the significance of the scale of building energy consumption, this study investigates how cogeneration systems influence the primary energy consumption and carbon footprint in residential buildings. The impact of onsite power generation capacity, its electrical and thermal efficiency, and its cost, on total primary energy consumption, equivalent carbon dioxide emissions, operating expenditure, and, most importantly, thermal and electrical energy balance, is presented. The conditions at which a cogeneration approach loses its advantage as an energy efficient residential resource are identified as a function of electrical grid’s carbon footprint and primary energy efficiency. Compared to a heat pump heating system with a coefficient of performance (COP) of three, a 0.5 kW cogeneration system with 40% electrical efficiency is shown to lose its environmental benefit if the electrical grid’s carbon dioxide intensity falls below 0.4 kg CO2 per kWh electricity.


2021 ◽  
Vol 13 (7) ◽  
pp. 4011
Author(s):  
Alfredo Sánchez-Bautista ◽  
Ester M. Palmero ◽  
Alberto J. Moya ◽  
Diego Gómez-Díaz ◽  
M. Dolores La Rubia

There are a lot of research programs focusing on the development of new solvents for carbon dioxide capture. The most important priority should be reducing the energy consumption needed at the regeneration step, but minimizing solvent degradation and its corrosivity is also considered as a priority. In this research, the aqueous blends of 2-amino-2-methyl-1-propanol (AMP: 1 kmol·m−3) and 1-amino-2-propanol (MIPA: 0.1–0.5 kmol·m−3) are characterized in terms of density, viscosity, and surface tension. The carbon dioxide absorption rate and capacity, the regeneration capacity, and the corrosivity of these solvents are also evaluated.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Stuti Haldar ◽  
Gautam Sharma

Purpose The purpose of this study is to investigate the impacts of urbanization on per capita energy consumption and emissions in India. Design/methodology/approach The present study analyses the effects of urbanization on energy consumption patterns by using the Stochastic Impacts by Regression on Population, Affluence and Technology in India. Time series data from the period of 1960 to 2015 has been considered for the analysis. Variables including Population, GDP per capita, Energy intensity, share of industry in GDP, share of Services in GDP, total energy use and urbanization from World Bank data sources have been used for investigating the relationship between urbanization, affluence and energy use. Findings Energy demand is positively related to affluence (economic growth). Further the results of the analysis also suggest that, as urbanization, GDP and population are bound to increase in the future, consequently resulting in increased carbon dioxide emissions caused by increased energy demand and consumption. Thus, reducing the energy intensity is key to energy security and lower carbon dioxide emissions for India. Research limitations/implications The study will have important policy implications for India’s energy sector transition toward non- conventional, clean energy sources in the wake of growing share of its population residing in urban spaces. Originality/value There are limited number of studies considering the impacts of population density on per capita energy use. So this study also contributes methodologically by establishing per capita energy use as a function of population density and technology (i.e. growth rates of industrial and service sector).


2009 ◽  
Vol 8 (1) ◽  
pp. 07
Author(s):  
C. A. R. De Carvalho ◽  
W. Q. Lamas

The problems related to energy consumption and pollutant emissions for thetransport sector represent a major global concern regarding climate changes caused by greenhouse gases, directly related to the increased level of gas emissions from fossil fuels , the main one being carbon dioxide. One way tominimize this problem is through the introduction of new technologies. Hybrid cars are one of the new technology options that has the main advantage of reducing fuel consumption and therefore reducing the amount of CO2 in the atmosphere. This paper gives an introduction to hybrid vehicles, with the aim of presenting their main advantages and evaluate their impact on emissions of CO2 in the Brazilian fleet, compared to conventional vehicles.


Sign in / Sign up

Export Citation Format

Share Document