scholarly journals Sensor-integrated tap holder for process uncertainty detection based on tool vibration and axial length compensation sensors

Author(s):  
Tuğrul Öztürk ◽  
Erkut Sarıkaya ◽  
Matthias Weigold

AbstractThe tapping process is one of the most widespread manufacturing processes for internal threads, usually carried out at the end of the value chain. Any non-compliance with required quality standards or even the destruction of the thread due to process uncertainty in the tapping process is therefore subjected to high rework costs. Possible process uncertainties in the tapping process can be triggered by synchronization errors between feed rate and spindle speed, axis offset, faulty core holes and wear of the tapping tool. In order to detect process uncertainties during tapping and thus provide a basis for initiating countermeasures, a sensor-integrated tap holder was developed. This paper presents the realized concept of a rotating telemetry unit for signal processing, data acquisition and wireless data transmitting via WiFi standard on basis of low-cost embedded systems. Furthermore, two unique sensor concepts for measuring close-to-tool vibrations and the axial length compensation of the tapping tool are shown. Based on the sensor data in combination with feature engineering methods, process uncertainty during tapping are detected.

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2944
Author(s):  
Benjamin James Ralph ◽  
Marcel Sorger ◽  
Benjamin Schödinger ◽  
Hans-Jörg Schmölzer ◽  
Karin Hartl ◽  
...  

Smart factories are an integral element of the manufacturing infrastructure in the context of the fourth industrial revolution. Nevertheless, there is frequently a deficiency of adequate training facilities for future engineering experts in the academic environment. For this reason, this paper describes the development and implementation of two different layer architectures for the metal processing environment. The first architecture is based on low-cost but resilient devices, allowing interested parties to work with mostly open-source interfaces and standard back-end programming environments. Additionally, one proprietary and two open-source graphical user interfaces (GUIs) were developed. Those interfaces can be adapted front-end as well as back-end, ensuring a holistic comprehension of their capabilities and limits. As a result, a six-layer architecture, from digitization to an interactive project management tool, was designed and implemented in the practical workflow at the academic institution. To take the complexity of thermo-mechanical processing in the metal processing field into account, an alternative layer, connected with the thermo-mechanical treatment simulator Gleeble 3800, was designed. This framework is capable of transferring sensor data with high frequency, enabling data collection for the numerical simulation of complex material behavior under high temperature processing. Finally, the possibility of connecting both systems by using open-source software packages is demonstrated.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2480
Author(s):  
Isidoro Ruiz-García ◽  
Ismael Navarro-Marchal ◽  
Javier Ocaña-Wilhelmi ◽  
Alberto J. Palma ◽  
Pablo J. Gómez-López ◽  
...  

In skiing it is important to know how the skier accelerates and inclines the skis during the turn to avoid injuries and improve technique. The purpose of this pilot study with three participants was to develop and evaluate a compact, wireless, and low-cost system for detecting the inclination and acceleration of skis in the field based on inertial measurement units (IMU). To that end, a commercial IMU board was placed on each ski behind the skier boot. With the use of an attitude and heading reference system algorithm included in the sensor board, the orientation and attitude data of the skis were obtained (roll, pitch, and yaw) by IMU sensor data fusion. Results demonstrate that the proposed IMU-based system can provide reliable low-drifted data up to 11 min of continuous usage in the worst case. Inertial angle data from the IMU-based system were compared with the data collected by a video-based 3D-kinematic reference system to evaluate its operation in terms of data correlation and system performance. Correlation coefficients between 0.889 (roll) and 0.991 (yaw) were obtained. Mean biases from −1.13° (roll) to 0.44° (yaw) and 95% limits of agreements from 2.87° (yaw) to 6.27° (roll) were calculated for the 1-min trials. Although low mean biases were achieved, some limitations arose in the system precision for pitch and roll estimations that could be due to the low sampling rate allowed by the sensor data fusion algorithm and the initial zeroing of the gyroscope.


2021 ◽  
Vol 13 (8) ◽  
pp. 4496
Author(s):  
Giuseppe Desogus ◽  
Emanuela Quaquero ◽  
Giulia Rubiu ◽  
Gianluca Gatto ◽  
Cristian Perra

The low accessibility to the information regarding buildings current performances causes deep difficulties in planning appropriate interventions. Internet of Things (IoT) sensors make available a high quantity of data on energy consumptions and indoor conditions of an existing building that can drive the choice of energy retrofit interventions. Moreover, the current developments in the topic of the digital twin are leading the diffusion of Building Information Modeling (BIM) methods and tools that can provide valid support to manage all data and information for the retrofit process. This paper shows the aim and the findings of research focused on testing the integrated use of BIM methodology and IoT systems. A common data platform for the visualization of building indoor conditions (e.g., temperature, luminance etc.) and of energy consumption parameters was carried out. This platform, tested on a case study located in Italy, is developed with the integration of low-cost IoT sensors and the Revit model. To obtain a dynamic and automated exchange of data between the sensors and the BIM model, the Revit software was integrated with the Dynamo visual programming platform and with a specific Application Programming Interface (API). It is an easy and straightforward tool that can provide building managers with real-time data and information about the energy consumption and the indoor conditions of buildings, but also allows for viewing of the historical sensor data table and creating graphical historical sensor data. Furthermore, the BIM model allows the management of other useful information about the building, such as dimensional data, functions, characteristics of the components of the building, maintenance status etc., which are essential for a much more conscious, effective and accurate management of the building and for defining the most suitable retrofit scenarios.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 291 ◽  
Author(s):  
Hamdi Sahloul ◽  
Shouhei Shirafuji ◽  
Jun Ota

Local image features are invariant to in-plane rotations and robust to minor viewpoint changes. However, the current detectors and descriptors for local image features fail to accommodate out-of-plane rotations larger than 25°–30°. Invariance to such viewpoint changes is essential for numerous applications, including wide baseline matching, 6D pose estimation, and object reconstruction. In this study, we present a general embedding that wraps a detector/descriptor pair in order to increase viewpoint invariance by exploiting input depth maps. The proposed embedding locates smooth surfaces within the input RGB-D images and projects them into a viewpoint invariant representation, enabling the detection and description of more viewpoint invariant features. Our embedding can be utilized with different combinations of descriptor/detector pairs, according to the desired application. Using synthetic and real-world objects, we evaluated the viewpoint invariance of various detectors and descriptors, for both standalone and embedded approaches. While standalone local image features fail to accommodate average viewpoint changes beyond 33.3°, our proposed embedding boosted the viewpoint invariance to different levels, depending on the scene geometry. Objects with distinct surface discontinuities were on average invariant up to 52.8°, and the overall average for all evaluated datasets was 45.4°. Similarly, out of a total of 140 combinations involving 20 local image features and various objects with distinct surface discontinuities, only a single standalone local image feature exceeded the goal of 60° viewpoint difference in just two combinations, as compared with 19 different local image features succeeding in 73 combinations when wrapped in the proposed embedding. Furthermore, the proposed approach operates robustly in the presence of input depth noise, even that of low-cost commodity depth sensors, and well beyond.


2013 ◽  
Vol 344 ◽  
pp. 107-110
Author(s):  
Shun Ren Hu ◽  
Ya Chen Gan ◽  
Ming Bao ◽  
Jing Wei Wang

For the physiological signal monitoring applications, as a micro-controller based on field programmable gate array (FPGA) physiological parameters intelligent acquisition system is given, which has the advantages of low cost, high speed, low power consumption. FPGA is responsible for the completion of pulse sensor, the temperature sensor, acceleration sensor data acquisition and serial output and so on. Focuses on the design ideas and architecture of the various subsystems of the whole system, gives the internal FPGA circuit diagram of the entire system. The whole system is easy to implement and has a very good promotional value.


2014 ◽  
Vol 607 ◽  
pp. 791-794 ◽  
Author(s):  
Wei Kang Tey ◽  
Che Fai Yeong ◽  
Yip Loon Seow ◽  
Eileen Lee Ming Su ◽  
Swee Ho Tang

Omnidirectional mobile robot has gained popularity among researchers. However, omnidirectional mobile robot is rarely been applied in industry field especially in the factory which is relatively more dynamic than normal research setting condition. Hence, it is very important to have a stable yet reliable feedback system to allow a more efficient and better performance controller on the robot. In order to ensure the reliability of the robot, many of the researchers use high cost solution in the feedback of the robot. For example, there are researchers use global camera as feedback. This solution has increases the cost of the robot setup fee to a relatively high amount. The setup system is also hard to modify and lack of flexibility. In this paper, a novel sensor fusion technique is proposed and the result is discussed.


2021 ◽  
pp. 1-15
Author(s):  
JOERGEN OERSTROEM MOELLER

Over the last 25 years, Asia’s economic rise has been extraordinary. Its share of global gross domestic product (GDP) has risen from 5.8% to 22.9%. 1 The first phase of high economic growth — up to 1995 — saw Asia enter the global supply chain primarily with labor-intensive/low-cost manufacturing. Domestic consumption was a fairly low share of GDP; Asia was manufacturing mainly for consumption in the US and Europe. As such, it was primarily a rule-taker. In the second phase — from 1995 to 2020 — it gradually turned into an economic force joining the US and Europe in shaping the global economy, exercising significant influence upon the value chain, the cycles of the global economy, transport and logistics, the global capital markets and consumption patterns (consumer preferences and tastes). While not yet among the leading rule-makers, it had become difficult for policymakers (public and private) to make decisions without Asia’s consent. To form an opinion of today’s emerging third phase — post 2020 — the intriguing question is whether the Asian countries have adopted what may be termed Anglo-American economic thinking (basically, the primacy of the market). Or whether behind the curtain, the Asian economy works in its own way diverging from the American and British economic schools. Since demographics and sheer economic scale mean that Asia will dominate the global economy in the years to come, the nature of the Asian economy will be of crucial importance for the future global economy. The conclusion of this paper is that “Asia” in many respects differs — and fundamentally so — from market economy principles. How this prospect should be interpreted is also evolving, as circumstances change. Certainly, the repercussions of COVID-19 have not been the same in the US, Europe, East Asia and South Asia — and this may suggest that socio-political structures have a stronger impact on economic outcomes than economic theory teaches, thus calling into question the global validity of market economy principles.


2013 ◽  
Vol 860-863 ◽  
pp. 2850-2854 ◽  
Author(s):  
Ya Jun Bi ◽  
Hong Fei Li

The hardware structure of a liquid level detection system for lead-acid battery was briefly introduced. The system adopts AT89C51 MCU as host module, combined with display storage, extended storage and the watch dog technology. The slave module adopts AT89C2051 MCU, which driver the linear CCD to realize non-contact measurement in acidic and corrosive conditions. The infrared transmission module uses RS-232 serial-to-infrared technology to realize wireless data delivery. The damage due to sensor corrosion could be avoided in this system. Compared with other similar equipments, this system has the advantages of simple structure, small volume, low cost, high measure precision and convenient maintenance.


Author(s):  
SAA Nahid ◽  
PJG Henriksson ◽  
MA Wahab

Growth of the freshwater prawn (Macrobrachium rosenbergii) sector in Bangladesh since 1970s has been supported by natural availability of freshwater apple snail (Pila globosa), used for on-farm prawn feeds. The present study identified the current configuration of the value-chain benefits and constraints of freshwater apple snail in south-western Bangladesh in August 2011, based upon Rapid Market Appraisal (RMA) approach. The site of snail collection was Chanda Beel in Gopalganj district, while trading, processing and final consumption was represented by Rayer Mahal Bazar in Khulna district. There were seven different nodes recognized throughout the value chain. Snail marketing was identified as a seasonal business and took place during June to November each year. Between 1995 and 2011 the price of whole snail, meat and shell has increased by 800%, 325% and 315%, respectively. The abundance of snail had been reduced and its demand has increased due to the expansion of the prawn farming industry. Prawn farmers preferred snail meat due to its’ low cost (US$ 0.21 kg-1) as a source of protein compared to commercial prawn feed (US$ 0.41 kg-1). Snail harvesting and processing were considered as additional livelihood options for the poor, where 60% of the labour involved in snail harvesting were women, and 95% the de-shelling workforce. Induced breeding in captivity and sustainable management in nature as well as development of commercial production of apple snails might reduce the pressure on ecosystems and positively contributed to the continued expansion of freshwater prawn farming in Bangladesh. DOI: http://dx.doi.org/10.3329/ijarit.v3i2.17840 Int. J. Agril. Res. Innov. & Tech. 3 (2): 22-30, December, 2013


Sign in / Sign up

Export Citation Format

Share Document