scholarly journals Effect of cutting parameters on chips and burrs formation with traditional micromilling and ultrasonic vibration assisted micromilling

Author(s):  
Zhonghang Yuan ◽  
Bin Fang ◽  
Yuanbin Zhang ◽  
Fei Wang
2019 ◽  
Vol 11 (8) ◽  
pp. 168781401987089 ◽  
Author(s):  
Yingshuai Xu ◽  
Zhihui Wan ◽  
Ping Zou ◽  
Qinjian Zhang

There are many problems and physical phenomena in turning process, like machined surface quality, cutting force, tool wear, and so on. These factors and the chip shape of workpiece materials, which is an important aspect to study the mechanism of ultrasonic vibration–assisted turning, go hand in hand. This article first introduces the types and changes of chip, meanwhile the chip formation mechanism of ultrasonic vibration–assisted turning is studied and analyzed, and the turning experiments of 304 austenitic stainless steel with and without ultrasonic vibration are carried out. The difference of chip morphology between ultrasonic vibration–assisted turning and conventional turning is contrasted and analyzed from the macroscopic and microscopic point of view. The influence of process parameters on chip shape and the impact of chip shape on machining effect are also analyzed. Results indicate that when process parameters (vibration frequency, ultrasonic amplitude, and cutting parameters) are suitably selected, ultrasonic vibration–assisted turning can gain access to better chip shape and chip breaking effect than conventional turning. By contrast with conventional turning, phenomenon of serrated burr on the chip edge and the surface defects of chip in ultrasonic vibration–assisted turning have improved significantly. Moreover, it is found that superior chip morphology in ultrasonic vibration–assisted turning can be acquired under the circumstance of comparatively small cutting parameters (cutting speed, depth of cut, and feed rate); at the same time, preferable chips can also obtain ranking machining effect.


Author(s):  
Yingshuai Xu ◽  
Zhihui Wan ◽  
Ping Zou ◽  
Weili Huang ◽  
Guoqing Zhang

The generation mechanism of cutting force in ultrasonic vibration assisted turning (UAT), with the composition and decomposition of cutting force is discussed in this paper, and the model of cutting force in UAT is established based on the mechanism of UAT. The force measuring test system is designed on the basis of the established machining system of UAT. The contrast experiments for turning the workpiece of 304 austenitic stainless steel are conducted with and without ultrasonic vibration under different technological parameters. Furthermore, the relational model and correlation between technological parameters and cutting force is obtained by regression analysis and variance analysis. Thereby, the mutual relation among these technological parameters is effectively controlled, which contributes to achieving the high quality and high efficient processing. Simultaneously, the influences of single technological parameter with the interaction between technological parameters on cutting force are researched and analyzed. The results prove that the cutting force is reduced significantly with the aid of ultrasonic vibration in turning and the choice of the proper ultrasonic amplitude, there is an optimal range of ultrasonic amplitudes as well. Meanwhile, the cutting parameters have great influence on cutting force, among which depth of cut has the superior influence, then the cutting speed, and feed rate has the minimal influence. Moreover, cutting parameters should not be too large, UAT is mainly used for semi-finishing or finishing at medium-low speed. UAT will get more ideal machining effect if cutting parameters are chosen properly.


2012 ◽  
Vol 497 ◽  
pp. 1-5
Author(s):  
Xiao Dan Xie ◽  
Yong Li ◽  
Cam Vinh Duong ◽  
Ahmed Al-Zahrani

Traditionally, single point diamond turning (SPDT) can not process ferreous metals because of acute tool wear. Ultrasonic vibration-assisted cutting(UVC) provides a promising solution for the problem. In this paper, for the aim of directly obtaining mirror surface on die steels, UVC method was used combining with SPDT process. Experiments were carried out on an ultra precision turning machine, cutting parameters and vibration parameters were well-chosen, and two kind of feed rates, two kinds of prevailing die steels were experimented. Mirror surfaces were successfully achieved on face turning, with the best roughness of Ra16.6nm. And the surface roughness, surface texture and tool wear in machining process were discussed.


2012 ◽  
Vol 229-231 ◽  
pp. 517-520 ◽  
Author(s):  
Zhi Min Zhou ◽  
Xiao Yan Li ◽  
Yuan Xin Qu ◽  
Jian Na

Titanium alloys, as difficult-to-cut materials, have poor machinability due to their superior mechanical properties, heat resistance and corrosion resistance. High cutting temperature and great cutting force that will greatly accelerate tool wear often occurs in titanium alloys cutting process. In this paper, an ultrasonic vibration turning method was used to lower diamond tool wear during TC4 titanium alloy turning process. Ultrasonic vibration turning tests were carried out with various cutting parameters. Experimental results indicated that there’s a significant reduction of the wear rate of diamond tools by means of ultrasonic vibration in TC4 turning process. For ultrasonic vibration turning, spindle speed, the amplitude and frequency of vibration of the tool are the greatest impact of tool wear, followed by feed rate, then the cutting depth.


2010 ◽  
Vol 139-141 ◽  
pp. 848-851
Author(s):  
Liang Yang ◽  
Ke Gao

Precision ultrasonic vibration cutting (UVC) is a promising technology in field of precision and ultra-precision machining. It is a kind of the pulsing cutting process with a constant vibration frequency and sine-wave amplitude of vibration. Its practicability has been a research focus since it came into being. In this article, an precision UVC system is built by designing this system, including the selection of precision machine and ultrasonic generator, the design of ultrasonic transducer, and then many cutting experiment are been done. Different of chips under the conditions of ultrasonic and no ultrasonic are made, and deformation coefficient of chip obtained by vibration cutting is smaller. The effect of cutting parameters on roughness is discussed in precision vibration cutting, the surface roughness decreased with the increase of the amplitude and the decrease of the cutting depth or feed rate, at the same time, there is an optimum cutting speed to receive the best surface.


2009 ◽  
Vol 626-627 ◽  
pp. 99-104 ◽  
Author(s):  
Zhi Min Zhou ◽  
Yuan Liang Zhang ◽  
J. Dong ◽  
X.Y. Li

While using natural diamond tool to cut stainless steel alloy, the cutting parameters have a great impact on tool life. The impact of cutting parameters on influencing cutting tool life was studied through experiments on using ultrasonic vibration to cut special stainless steel alloy. The experiments were conducted with various cutting speeds, different tool feed rates, altered cutting depths and adapted vibration parameters. Consequently, the relative curve between cutting parameters and tool life was obtained. The experimental results indicated that in the ultrasonic vibration the diamond tool can manufacture stainless steel alloy precisely and made surface quality well. The tool life depended on the spindle speed of machine tool as well as the amplitude and frequency of ultrasonic vibration to a large extent. Among the parameters which affect the processing quality, cutting speed was utmost, followed by feed followed, and the influence of back cutting depth was insignificant.


2008 ◽  
Vol 373-374 ◽  
pp. 746-749
Author(s):  
Gui Min Liu ◽  
Ya Ling Song ◽  
Li Li Ma ◽  
Feng Wang

Ultrasonic vibration cutting experiments have been carried out for the machining of the plasma-sprayed Al2O3 coatings. The optimized value of V/Vc for the vibration cutting was obtained by a series of tests. The comparing experiments of the ultrasonic vibration cutting and the traditional cutting for the machining of the plasma-sprayed Al2O3 coatings by the cube nitride boride (CBN) and YC09 (hard alloy) lathe tools have been executed. The results indicate that the valid cutting time for the vibration cutting is 3-4 times longer than that for the traditional cutting, at the same time, the surface roughness values of the coatings machined by the vibration cutting are less than that machined by the traditional cutting. CBN and YC09 have been optimized as the candidates to machine the Al2O3 coatings through a series of vibration cutting tests carried out on the lathe tools of CBN and three hard alloys of YC09, YH3 and YGHT. The cutting parameters, such as V, aP and f, for the vibration cutting of the Al2O3 coatings by CBN and YC09 were obtained through the orthogonal tests and regression analysis. The obtained parameters have been utilized to machine the plasma-sprayed Al2O3 coatings for validation, and the results indicate that the ultrasonic vibration cutting is a competitive method to machine the plasma-sprayed Al2O3 coatings.


2014 ◽  
Vol 800-801 ◽  
pp. 580-584
Author(s):  
Liang Yang ◽  
Lei Sun ◽  
Li Xu

According to the principle of ultrasonic vibration turning, the first step is to study different position changes of surface roughness with cutting parameters under ultrasonic vibration turning of slender shaft by the test of single factor, and determining the extreme position of surface roughness with the slender shaft changes in different cutting conditions. The second step is to study the influence of cutting parameters on the overall average surface roughness of work piece under ultrasonic vibration turning of slender shaft by orthogonal test design, and compared with the conventional turning. The experimental results show that ultrasonic vibration turning slender shaft processing can significantly improve the surface roughness. At the same time, the influence laws of cutting parameters on the surface roughness are investigated, and finding out the optimal cutting experimental parameters. Key words: slender shaft; ultrasonic vibration turning; surface roughness; orthogonal test design.


2006 ◽  
Vol 532-533 ◽  
pp. 57-60 ◽  
Author(s):  
Yuan Liang Zhang ◽  
Zhi Min Zhou ◽  
Zhi Hui Xia

Ultrasonic vibration is applied to diamond turning of special stainless steel to decrease diamond tool wear and improve the surface quality of the workpieces. It reviews the principle of diamond turning of special stainless steel by applying ultrasonic vibration combined with gas shield. Compared with the ordinary machining method, cutting temperature and cutting force are greatly reduced when machining by application of ultrasonic vibration, and the appetency between a diamond tool and Ferrous atom of a workpiece is also minimized as gas shield application. The Experiments of cutting special stainless steel workpieces show that the surface roughness Ra is less than 0.15μm and flank wear-width is less than 5μm when cutting distance is up to 2000m. It takes research on the effect of cutting parameters to surface roughness and tool wear. The experiment result shows that the amplitude is the most important factor which effects tool wear and surface roughness most.


2014 ◽  
Vol 800-801 ◽  
pp. 501-505
Author(s):  
Can Zhao ◽  
Yang Yang Shi ◽  
Min Qi ◽  
Zi Biao Wang ◽  
Wang Xi

According to the principle of ultrasonic vibration turning, the first step is to study different position changes of surface roughness with cutting parameters under ultrasonic vibration turning of slender shaft by the test of single factor, and determining the extreme position of surface roughness with the slender shaft changes in different cutting conditions. The second step is to study the influence of cutting parameters on the overall average surface roughness of work piece under ultrasonic vibration turning of slender shaft by orthogonal test design, and compared with the conventional turning. The experimental results show that ultrasonic vibration turning slender shaft processing can significantly improve the surface roughness. At the same time, the influence laws of cutting parameters on the surface roughness are investigated, and finding out the optimal cutting experimental parameters.


Sign in / Sign up

Export Citation Format

Share Document