Saccharomyces cerevisiae strain UFMG 905 protects against bacterial translocation, preserves gut barrier integrity and stimulates the immune system in a murine intestinal obstruction model

2010 ◽  
Vol 192 (6) ◽  
pp. 477-484 ◽  
Author(s):  
Simone V. Generoso ◽  
Mirelle Viana ◽  
Rosana Santos ◽  
Flaviano S. Martins ◽  
José A. N. Machado ◽  
...  
2017 ◽  
Vol 71 (Suppl. 1) ◽  
pp. 11-16 ◽  
Author(s):  
Ravinder Nagpal ◽  
Hariom Yadav

Background: The intestinal epithelial layer is the chief barricade between the luminal contents and the host. A healthy homeostatic intestinal barrier is pivotal for maintaining gastrointestinal health, which impacts the overall health as it safeguards the gut-blood axis and checks gut microbes including potential pathogens from entering into the circulation. Summary: Under healthy milieus, the intestinal barrier is generally very dynamic and effective, with luminal side being heavily infested with a wide variety of gut microbes while the basolateral side remains virtually sterile. However, certain conditions such as abnormal exposure to toxins, drugs, pathogens etc. or a state of hyper-inflammation due to disease conditions may weaken or destabilize the integrity of gut epithelia. A perturbed gut integrity and permeability (“leaky gut”) may lead to microbial (bacterial) translocation, and the eventual leakage of bacteria or their metabolites into the circulation can make the host susceptible to various types of diseases via inducing chronic or acute inflammatory response. Key Message: Given a close association with gut integrity, bacterial translocation and inflammatory responses have recently emerged as a clinically important research field and have unveiled novel aspects of gut microbial ecology and various gastrointestinal, metabolic, and lifestyle diseases. This review aims to describe the significance of a healthy gut barrier integrity and permeability, as well as the factors and consequences associated with a compromised gut barrier, while discussing briefly the dietary approaches including probiotics and prebiotics that could ameliorate gut health by restoring gut environment and barrier integrity, thereby preventing bacterial translocation.


2005 ◽  
Vol 73 (6) ◽  
pp. 3686-3692 ◽  
Author(s):  
Misha D. Luyer ◽  
Wim A. Buurman ◽  
M'hamed Hadfoune ◽  
Gea Speelmans ◽  
Jan Knol ◽  
...  

ABSTRACT Probiotic therapy modulates the composition of the intestinal flora and inhibits the inflammatory response. These properties may be of benefit in the preservation of gut barrier integrity after injury or stress. In this study, we examined the effect of two Lactobacillus strains selected for their pathogen exclusion properties on intestinal barrier integrity following hemorrhagic shock. Additionally, the responsiveness of the macrophage cell line RAW 264.7 to combined exposure to Lactobacillus DNA or oligodeoxynucleotides containing CpG motifs (CpG-ODN) and endotoxin was assessed by measuring tumor necrosis factor alpha (TNF-α) release. Rats were administered lactobacilli (5 × 109 CFU) or vehicle for 7 days and were subjected subsequently to hemorrhagic shock by withdrawal of 2.1 ml blood/100 g tissue. Levels of plasma endotoxin, bacterial translocation to distant organs, and filamentous actin (F-actin) in the ileum were determined 24 h later. Rats treated with Lactobacillus rhamnosus showed reduced levels of plasma endotoxin (8 ± 2 pg/ml versus 24 ± 4 pg/ml; P = 0.01), bacterial translocation (2 CFU/gram versus 369 CFU/gram; P < 0.01), and disruption of F-actin distribution following hemorrhagic shock compared with nontreated control rats. In contrast, pretreatment with Lactobacillus fermentum had no substantial effect on gut barrier integrity. Interestingly, DNA preparations from both lactobacilli reduced endotoxin-induced TNF-α release dose dependently, whereas CpG-ODN increased TNF-α release. In conclusion, the pathogen exclusion properties of both Lactobacillus strains and the reduction of endotoxin-induced inflammation by their DNA in vitro are not prerequisites for a beneficial effect of probiotic therapy on gut barrier function following hemorrhagic shock. Although pretreatment with Lactobacillus spp. may be useful to preserve gut barrier integrity following severe hypotension, a thorough assessment of specific strains seems to be essential.


Author(s):  
Ida N Jamal ◽  
Reiny A Tumbol ◽  
Remy E.P Mangindaan

Motile Aeromonas Septicaemia disease (MAS) attacking tilapia has increased in recent years as a consequence of intensive aquaculture activities, which led to losses in aquaculture industry. The agent causing MAS disease is Aeromonas hydrophila. The disease can be controlled with the β-glucan. As immunostimulants, β-glucans can also increase resistance in farmed tilapia. Studies on the use of β-glucan extracted from baker's yeast Saccharomyces cerevisiae was intended to evaluate the non-specific immune system of tilapia that were challenged with Aeromonas hydrophila. The method used was an experimental method with a completely randomized design consisting of four treatments with three replicats. The dose of β-glucan used as treatments were 0 mg.kg-1 fish (Control), 5 mg.kg-1 fish (B), 10 mg.kg-1 fish (C) and 20 mg.kg-1 fish (D), each treatment as injected three times at intervals of 3 days, the injection volume of 0.5 ml/fish for nine days and resistance surveillance for seven days. The results showed that the difference in the amount of β-glucan and the frequency of the injected real influence on total leukocytes, phagocytic activity and resistance. Total leukocytes, phagocytic activity and resistance to treatment was best achieved by the administration of C a dose of  10 mg.kg-1 of the fish© Penyakit Motil Aeromonas Septicaemia (MAS) yang menyerang ikan nila mengalami peningkatan selama beberapa tahun terakhir sebagai konsekuensi dari kegiatan akuakultur intensif, yang menyebabkan kerugian dalam industri budidaya. Agen utama penyebab penyakit MAS adalah Aeromonas hydrophila. Untuk mengendalikan penyakit tersebut dapat dilakukan dengan pemberian β-glukan. Sebagai imunostimulan, β-glukan juga dapat  meningkatkan resistensi pada ikan nila yang dibudidayakan. Pengkajian mengenai pemanfaatan β-glukan yang diekstrak dari ragi roti Saccharomyces cerevisiae dimaksudkan untuk menguji sistem imun non spesifik ikan nila yang diuji tantang dengan bakteri Aeromonas hydrophila. Metode yang digunakan yaitu metode eksperimen dengan rancangan acak lengkap yang terdiri dari empat perlakuan dan tiga ulangan. Dosis β-glukan  yang digunakan sebagai perlakuan sebesar 0 mg.kg-1 ikan (Kontrol), 5 mg.kg-1 ikan (B), 10 mg.kg-1 ikan (C) dan 20 mg.kg-1 ikan (D), masing-masing perlakuan diinjeksi sebanyak 3 kali dengan interval waktu 3 hari selama 9 hari, volume injeksi 0,5 mL/ekor ikan dan pengamatan resistensi selama tujuh hari. Hasil penelitian menunjukkan perbedaan jumlah β-glukan dan frekuensi pemberian yang diinjeksikan memberikan pengaruh nyata terhadap total leukosit, aktivitas fagositosis dan resistensi. Total leukosit, aktivitas fagositosis dan resistensi terbaik dicapai pada perlakuan C dengan dosis 10 mg.kg-1 ikan©


2021 ◽  
Vol 22 (2) ◽  
pp. 744
Author(s):  
David Diaz ◽  
Elisa Lopez-Dolado ◽  
Sergio Haro ◽  
Jorge Monserrat ◽  
Carlos Martinez-Alonso ◽  
...  

Our aim was to investigate the subset distribution and function of circulating monocytes, proinflammatory cytokine levels, gut barrier damage, and bacterial translocation in chronic spinal cord injury (SCI) patients. Thus, 56 SCI patients and 28 healthy donors were studied. The levels of circulating CD14+highCD16−, CD14+highCD16+, and CD14+lowCD16+ monocytes, membrane TLR2, TLR4, and TLR9, phagocytic activity, ROS generation, and intracytoplasmic TNF-α, IL-1, IL-6, and IL-10 after lipopolysaccharide (LPS) stimulation were analyzed by polychromatic flow cytometry. Serum TNF-α, IL-1, IL-6 and IL-10 levels were measured by Luminex and LPS-binding protein (LBP), intestinal fatty acid-binding protein (I-FABP) and zonulin by ELISA. SCI patients had normal monocyte counts and subset distribution. CD14+highCD16− and CD14+highCD16+ monocytes exhibited decreased TLR4, normal TLR2 and increased TLR9 expression. CD14+highCD16− monocytes had increased LPS-induced TNF-α but normal IL-1, IL-6, and IL-10 production. Monocytes exhibited defective phagocytosis but normal ROS production. Patients had enhanced serum TNF-α and IL-6 levels, normal IL-1 and IL-10 levels, and increased circulating LBP, I-FABP, and zonulin levels. Chronic SCI patients displayed impaired circulating monocyte function. These patients exhibited a systemic proinflammatory state characterized by enhanced serum TNF-α and IL-6 levels. These patients also had increased bacterial translocation and gut barrier damage.


2022 ◽  
Author(s):  
Lourdes Ortiz-Alvarez ◽  
Huiwen Xu ◽  
Xinyu Di ◽  
Isabelle Kohler ◽  
Francisco J. Osuna-Prieto ◽  
...  

2007 ◽  
Vol 56 (3) ◽  
pp. 352-359 ◽  
Author(s):  
Flaviano S. Martins ◽  
Ana Cristina P. Rodrigues ◽  
Fabiana C. P. Tiago ◽  
Francisco J. Penna ◽  
Carlos A. Rosa ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Fang Liu ◽  
Seul A. Lee ◽  
Stephen M. Riordan ◽  
Li Zhang ◽  
Lixin Zhu

Anti-cytokine antibodies are used in treating chronic inflammatory diseases and autoimmune diseases such as inflammatory bowel disease and rheumatic diseases. Patients with these diseases often have a compromised gut barrier function, suggesting that anti-cytokine antibodies may contribute to the re-establishment of gut barrier integrity, in addition to their immunomodulatory effects. This paper reviews the effects of anti-cytokine antibodies on gut barrier function and their mechanisms.


Author(s):  
Giovanni Vitale ◽  
◽  
Alessandra Dicitore ◽  
Luigi Barrea ◽  
Emilia Sbardella ◽  
...  

Abstract Gut microbiota is represented by different microorganisms that colonize the intestinal tract, mostly the large intestine, such as bacteria, fungi, archaea and viruses. The gut microbial balance has a key role in several functions. It modulates the host’s metabolism, maintains the gut barrier integrity, participates in the xenobiotics and drug metabolism, and acts as protection against gastro-intestinal pathogens through the host’s immune system modulation. The impaired gut microbiota, called dysbiosis, may be the result of an imbalance in this equilibrium and is linked with different diseases, including cancer. While most of the studies have focused on the association between microbiota and gastrointestinal adenocarcinomas, very little is known about gastroenteropancreatic (GEP) neuroendocrine neoplasms (NENs). In this review, we provide an overview concerning the complex interplay between gut microbiota and GEP NENs, focusing on the potential role in tumorigenesis and progression in these tumors.


Sign in / Sign up

Export Citation Format

Share Document