AHL signaling molecules with a large acyl chain enhance biofilm formation on sulfur and metal sulfides by the bioleaching bacterium Acidithiobacillus ferrooxidans

2012 ◽  
Vol 97 (8) ◽  
pp. 3729-3737 ◽  
Author(s):  
Alex González ◽  
Sören Bellenberg ◽  
Sigde Mamani ◽  
Lina Ruiz ◽  
Alex Echeverría ◽  
...  
2007 ◽  
Vol 20-21 ◽  
pp. 345-349
Author(s):  
Lina María Ruíz ◽  
Alex Gonzalez ◽  
Marine Frezza ◽  
Laurent Soulère ◽  
Yves Queneau ◽  
...  

Biofilm development plays a pivotal role in the bioleaching process. The attachment of the acidophilic chemolithotrophic Acidithiobacillus ferrooxidans to mineral surfaces is mediated by extracellular polymeric substances (EPS) involved in biofilm development. Previous work suggests that EPS composition of A. ferrooxidans is adapted to the energy source and, accordingly, the bacterium must be able to sense the surface to which attachment occurs with the consequent triggering of the expression of different EPS-genes. Quorum sensing (QS) is recognized as one of the main regulators of biofilm formation. A. ferrooxidans possesses a functional QS type AI-1 system and the analysis of culture supernatants revealed us that this bacterium is able to synthesize nine different homoserine lactones (AHLs) whose acyl-chain lengths oscillate between 8 and 16 carbons and include an alcohol or a ketone function at the C3 position. The transcription levels of the afeI gene encoding for the AHL synthase are higher in cells grown in sulfur and thiosulfate media than in iron-grown cells, suggesting that biofilm formation in A. ferrooxidans would be regulated by the QS type AI-1 system. In the present study, the effect of several synthetic AHLs and analogues on the attachment of A. ferrooxidans to pyrite was analyzed. Preliminary results suggest that some of these molecules are changing the bacterial attachment to pyrite.


2013 ◽  
Vol 825 ◽  
pp. 107-110
Author(s):  
Sören Bellenberg ◽  
Robert Barthen ◽  
Mario Vera ◽  
Nicolas Guiliani ◽  
Wolfgang Sand

A functional luxIR-type Quorum Sensing (QS) system is present in Acidithiobacillus ferrooxidans. However, cell-cell communication among various acidophilic chemolithoautotrophs growing on pyrite has not been studied in detail. These aspects are the scope of this study with emphasis on the effects exerted by the N-acyl-homoserine lactone (AHL) type signaling molecules which are produced by Acidithiobacillus ferrooxidans. Their effects on attachment and leaching efficiency by other leaching bacteria, such as Acidithiobacillus ferrivorans, Acidiferrobacter spp. SPIII/3 and Leptospirillum ferrooxidans in pure and mixed cultures growing on pyrite is shown.


2008 ◽  
Vol 57 (4) ◽  
pp. 375-380 ◽  
Author(s):  
Camila Carlos ◽  
Fernanda C. Reis ◽  
Renato Vicentini ◽  
Danielle J. Madureira ◽  
Laura M. M. Ottoboni

2007 ◽  
Vol 73 (20) ◽  
pp. 6339-6344 ◽  
Author(s):  
Tomohiro Morohoshi ◽  
Toshitaka Shiono ◽  
Kiyomi Takidouchi ◽  
Masashi Kato ◽  
Norihiro Kato ◽  
...  

ABSTRACT Quorum sensing is a regulatory system for controlling gene expression in response to increasing cell density. N-Acylhomoserine lactone (AHL) is produced by gram-negative bacteria, which use it as a quorum-sensing signal molecule. Serratia marcescens is a gram-negative opportunistic pathogen which is responsible for an increasing number of serious nosocomial infections. S. marcescens AS-1 produces N-hexanoyl homoserine lactone (C6-HSL) and N-(3-oxohexanoyl) homoserine lactone and regulates prodigiosin production, swarming motility, and biofilm formation by AHL-mediated quorum sensing. We synthesized a series of N-acyl cyclopentylamides with acyl chain lengths ranging from 4 to 12 and estimated their inhibitory effects on prodigiosin production in AS-1. One of these molecules, N-nonanoyl-cyclopentylamide (C9-CPA), had a strong inhibitory effect on prodigiosin production. C9-CPA also inhibited the swarming motility and biofilm formation of AS-1. A competition assay revealed that C9-CPA was able to inhibit quorum sensing at four times the concentration of exogenous C6-HSL and was more effective than the previously reported halogenated furanone. Our results demonstrated that C9-CPA was an effective quorum-sensing inhibitor for S. marcescens AS-1.


2015 ◽  
Vol 1130 ◽  
pp. 118-122 ◽  
Author(s):  
Sören Bellenberg ◽  
Dieu Huynh ◽  
Laura Castro ◽  
Maria Boretska ◽  
Wolfgang Sand ◽  
...  

Reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), superoxide (O2-) and hydroxyl radicals (OH.) are known to be formed on the surface of metal sulfides in aqueous solution under oxic and anoxic conditions. Consequently bacteria which have not been adapted to their presence are metabolically inhibited [1], presumably due to the presence of these ROS. Pyrite-grown cells ofAcidithiobacillus ferrooxidansT, in contrast to iron (II)-grown cells, were able to oxidize iron (II)-ions or pyrite after 24 h starvation and contact with 1 mM externally added H2O2. In this study, similar results were obtained withAcidiferrobactersp. SPIII/3. However,Acidithiobacillus ferrivoransSS3 showed the highest tolerance towards contact with H2O2, whileLeptospirillum ferrooxidansDSM 2391 was most sensitive. Similar results were obtained after exposure to defined doses of gamma radiation, which cleaves water molecules and generates ROS. In this study members of the three aforementioned genera of mineral-oxidizing bacteria were compared regarding their ability to survive, colonize pyrite and to oxidize iron (II)-ions after exposure to different concentrations of H2O2. Pyrite colonization was studied after exposure to endogenous ROS formed on pyrite or after external addition of H2O2using confocal laser scanning microscopy (CLSM).


2015 ◽  
Vol 197 (13) ◽  
pp. 2104-2111 ◽  
Author(s):  
Izumi Mashima ◽  
Futoshi Nakazawa

Dental plaque is a multispecies oral biofilm, the development of which is initiated by adherence of the pioneerStreptococcusspp. OralVeillonellaspp., includingV. atypica,V. denticariosi,V. dispar,V. parvula,V. rogosae, andV. tobetsuensis, are known as early colonizers in oral biofilm formation. These species have been reported to coaggregate withStreptococcusspp. in a metabolic cooperation-dependent manner to form biofilms in human oral cavities, especially in the early stages of biofilm formation. However, in our previous study,Streptococcus gordoniishowed biofilm formation to the greatest extent in the presence ofV. tobetsuensis, without coaggregation between species. These results suggest thatV. tobetsuensisproduces signaling molecules that promote the proliferation ofS. gordoniiin biofilm formation. It is well known in many bacterial species that the quorum-sensing (QS) system regulates diverse functions such as biofilm formation. However, little is known about the QS system with autoinducers (AIs) with respect toVeillonella and Streptococcusspp. Recently, autoinducer 1 (AI-1) and AI-2 were detected and identified in the culture supernatants ofV. tobetsuensisas strong signaling molecules in biofilm formation withS. gordonii. In particular, the supernatant fromV. tobetsuensisshowed the highest AI-2 activity among 6 oralVeillonellaspecies, indicating that AIs, mainly AI-2, produced byV. tobetsuensismay be important factors and may facilitate biofilm formation ofS. gordonii. Clarifying the mechanism that underlies the QS system betweenS. gordoniiandV. tobetsuensismay lead to the development of novel methods for the prevention of oral infectious diseases caused by oral biofilms.


2021 ◽  
Author(s):  
Yuta Inaba ◽  
Alan C. West ◽  
Scott Banta

Acidithiobacillus ferrooxidans are well-studied iron- and sulfur-oxidizing acidophilic chemolithoautotrophs that are exploited for their ability to participate in the bioleaching of metal sulfides. Here, we overexpressed the endogenous glutamate--cysteine ligase and glutathione synthetase genes in separate strains and found that glutathione synthetase overexpression increased intracellular glutathione levels. We explored the impact of pH on the halotolerance of iron oxidation in wild type and engineered cultures. The increase in glutathione allowed the modified cells to grow under salt concentrations and pH conditions that are fully inhibitory to wild type cells. These results indicate that glutathione overexpression can be used to increase halotolerance in A. ferrooxidans and would likely be a useful strategy on other acidophilic bacteria.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244246
Author(s):  
Masaru Miyagi ◽  
Rachel Wilson ◽  
Daisuke Saigusa ◽  
Keiko Umeda ◽  
Reina Saijo ◽  
...  

We previously found that the elevated abundance of the fungus Candida tropicalis is positively correlated with the bacteria Escherichia coli and Serratia marcescens in Crohn’s disease patients and the three pathogens, when co-cultured, form a robust mixed-species biofilm. The finding suggests that these three pathogens communicate and promote biofilm formation, possibly through secretion of small signaling molecules. To identify candidate signaling molecules, we carried out a metabolomic analysis of the single-species and triple-species cultures of the three pathogens. This analysis identified 15 metabolites that were highly increased in the triple-species culture. One highly induced metabolite was indole-3-acetic acid (IAA), which has been shown to induce filamentation of certain fungi. We thus tested the effect of IAA on biofilm formation of C. tropicalis and demonstrated that IAA promotes biofilm formation of C. tropicalis. Then, we carried out isotope tracing experiments using 13C-labeled-tryptophan as a precursor to uncover the biosynthesis pathway of IAA in C. tropicalis. The results indicated that C. tropicalis synthesizes IAA through the indole-3-pyruvate pathway. Further studies using inhibitors of the indole-3-pyruvate pathway are warranted to decipher the mechanisms by which IAA influences biofilm formation.


2020 ◽  
Author(s):  
Paloma Nathane Nunes de Freitas ◽  
Amanda Flávia da Silva Rovida ◽  
Caroline Rosa Silva ◽  
Sônia Alvim Veiga Pileggi ◽  
Luiz Ricardo Olchanheski ◽  
...  

AbstractPesticides contribute to pest control and increased agricultural production; however, they are toxic to non-target organisms and they contaminate the environment. The exposure of bacteria to these substances can lead to the need for physiological and structural changes for survival, which can be determined by genes whose expression is regulated by quorum sensing (QS). However, it is not yet clear whether these processes can be induced by herbicides. Thus, the aim of this work was to determine whether there is a QS response system in a Pseudomonas fluorescens strain that is modulated by herbicides. This strain was isolated from water storage tanks used for washing pesticide packaging and was tested against herbicides containing saflufenacil, glyphosate, sulfentrazone, 2,4-D, and dicamba as active molecules. We found that this strain possibly uses QS signaling molecules to control the production of reactive oxygen species, whether those produced by the bacterium’s energy generating system or by molecules induced by the presence of saflufenacil and glyphosate. This strain used other signaling molecules for various stages of biofilm formation in the presence of herbicides containing sulfentrazone, 2,4-D, and dicamba. These findings, as an initial screening which will guide new studies, suggest that this strain has a flexibility in gene expression that allows survival in the presence of several stress-inducing molecules, regardless of previous exposure. This represents a model of metabolic and physiological plasticity. Biofilms made up of several bacterial species can use this model in agricultural environments, increasing the potential for degradation of xenobiotics, but with impacts on diversity and functionality of microbiotas in these environments.


Sign in / Sign up

Export Citation Format

Share Document