scholarly journals Underground metabolism facilitates the evolution of novel pathways for vitamin B6 biosynthesis

Author(s):  
Björn Richts ◽  
Fabian M. Commichau

Abstract The term vitamin B6 is a designation for the vitamers pyridoxal, pyridoxamine, pyridoxine and the respective phosphate esters pyridoxal-5′-phosphate (PLP), pyridoxamine-5′-phosphate and pyridoxine-5′-phosphate. Animals and humans are unable to synthesise vitamin B6. These organisms have to take up vitamin B6 with their diet. Therefore, vitamin B6 is of commercial interest as a food additive and for applications in the pharmaceutical industry. As yet, two naturally occurring routes for de novo synthesis of PLP are known. Both routes have been genetically engineered to obtain bacteria overproducing vitamin B6. Still, major genetic engineering efforts using the existing pathways are required for developing fermentation processes that could outcompete the chemical synthesis of vitamin B6. Recent suppressor screens using mutants of the Gram-negative and Gram-positive model bacteria Escherichia coli and Bacillus subtilis, respectively, carrying mutations in the native pathways or heterologous genes uncovered novel routes for PLP biosynthesis. These pathways consist of promiscuous enzymes and enzymes that are already involved in vitamin B6 biosynthesis. Thus, E. coli and B. subtilis contain multiple promiscuous enzymes causing a so-called underground metabolism allowing the bacteria to bypass disrupted vitamin B6 biosynthetic pathways. The suppressor screens also show the genomic plasticity of the bacteria to suppress a genetic lesion. We discuss the potential of the serendipitous pathways to serve as a starting point for the development of bacteria overproducing vitamin B6. Key points • Known vitamin B6 routes have been genetically engineered. • Underground metabolism facilitates the emergence of novel vitamin B6 biosynthetic pathways. • These pathways may be suitable to engineer bacteria overproducing vitamin B6.

2020 ◽  
Vol 48 (12) ◽  
pp. 6403-6412 ◽  
Author(s):  
Ye Wang ◽  
Haochen Wang ◽  
Lei Wei ◽  
Shuailin Li ◽  
Liyang Liu ◽  
...  

Abstract Promoter design remains one of the most important considerations in metabolic engineering and synthetic biology applications. Theoretically, there are 450 possible sequences for a 50-nt promoter, of which naturally occurring promoters make up only a small subset. To explore the vast number of potential sequences, we report a novel AI-based framework for de novo promoter design in Escherichia coli. The model, which was guided by sequence features learned from natural promoters, could capture interactions between nucleotides at different positions and design novel synthetic promoters in silico. We combined a deep generative model that guides the search for artificial sequences with a predictive model to preselect the most promising promoters. The AI-designed promoters were optimized based on the promoter activity in E. coli and the predictive model. After two rounds of optimization, up to 70.8% of the AI-designed promoters were experimentally demonstrated to be functional, and few of them shared significant sequence similarity with the E. coli genome. Our work provided an end-to-end approach to the de novo design of novel promoter elements, indicating the potential to apply deep learning methods to de novo genetic element design.


1999 ◽  
Vol 338 (3) ◽  
pp. 701-708 ◽  
Author(s):  
Evelyne RAUX ◽  
Treasa McVEIGH ◽  
Sarah E. PETERS ◽  
Thomas LEUSTEK ◽  
Martin J. WARREN

MET1 and MET8 mutants of Saccharomyces cerevisiae can be complemented by Salmonella typhimurium cysG, indicating that the genes are involved in the transformation of uroporphyrinogen III into sirohaem. In the present study, we have demonstrated complementation of defined cysG mutants of Sal. typhimurium and Escherichia coli, with either MET1 or MET8 cloned in tandem with Pseudomonas denitrificans cobA. The conclusion drawn from these experiments is that MET1 encodes the S-adenosyl-l-methionine uroporphyrinogen III transmethylase activity, and MET8 encodes the dehydrogenase and chelatase activities (all three functions are encoded by Sal. typhimurium and E. coli cysG). MET8 was further cloned into pET14b to allow expression of the protein with an N-terminal His-tag. After purification, the functions of the His-tagged Met8p were studied in vitro by assay with precorrin-2 in the presence of NAD+ and Co2+. The results demonstrated that Met8p acts as a dehydrogenase and chelatase in the biosynthesis of sirohaem. Moreover, despite the fact that S. cerevisiae does not make cobalamins de novo, we have shown also that MET8 is able to complement cobalamin cobaltochelatase mutants and have revealed a subtle difference in the early stages of the anaerobic cobalamin biosynthetic pathways between Sal. typhimurium and Bacillus megaterium.


2018 ◽  
Vol 115 (44) ◽  
pp. E10447-E10456 ◽  
Author(s):  
Ryan W. Paerl ◽  
John Sundh ◽  
Demeng Tan ◽  
Sine L. Svenningsen ◽  
Samuel Hylander ◽  
...  

Vitamin B1 (B1 herein) is a vital enzyme cofactor required by virtually all cells, including bacterioplankton, which strongly influence aquatic biogeochemistry and productivity and modulate climate on Earth. Intriguingly, bacterioplankton can be de novo B1 synthesizers or B1 auxotrophs, which cannot synthesize B1 de novo and require exogenous B1 or B1 precursors to survive. Recent isolate-based work suggests select abundant bacterioplankton are B1 auxotrophs, but direct evidence of B1 auxotrophy among natural communities is scant. In addition, it is entirely unknown if bulk bacterioplankton growth is ever B1-limited. We show by surveying for B1-related genes in estuarine, marine, and freshwater metagenomes and metagenome-assembled genomes (MAGs) that most naturally occurring bacterioplankton are B1 auxotrophs. Pyrimidine B1-auxotrophic bacterioplankton numerically dominated metagenomes, but multiple other B1-auxotrophic types and distinct uptake and B1-salvaging strategies were also identified, including dual (pyrimidine and thiazole) and intact B1 auxotrophs that have received little prior consideration. Time-series metagenomes from the Baltic Sea revealed pronounced shifts in the prevalence of multiple B1-auxotrophic types and in the B1-uptake and B1-salvaging strategies over time. Complementarily, we documented B1/precursor limitation of bacterioplankton production in three of five nutrient-amendment experiments at the same time-series station, specifically when intact B1 concentrations were ≤3.7 pM, based on bioassays with a genetically engineeredVibrio anguillarumB1-auxotrophic strain. Collectively, the data presented highlight the prevalent reliance of bacterioplankton on exogenous B1/precursors and on the bioavailability of the micronutrients as an overlooked factor that could influence bacterioplankton growth and succession and thereby the cycling of nutrients and energy in aquatic systems.


2021 ◽  
Author(s):  
Zhenya Chen ◽  
Tongtong Chen ◽  
Shengzhu Yu ◽  
Yi-Xin Huo

Abstract BackgroundGallic acid (GA) and pyrogallol are phenolic hydroxyl compounds and have diverse biological activities. Microbial-based biosynthesis of GA and pyrogallol has been emerged as an ecofriendly method to replace the traditional chemical synthesis. In GA and pyrogallol biosynthetic pathways, the low hydroxylation activity of p-hydroxybenzoate hydroxylase (PobA) towards 3,4-dihydroxybenzoic acid (3,4-DHBA) limited the high-level biosynthesis of GA and pyrogallol.ResultsThis work reported a high active PobA mutant (Y385F/T294A/V349A PobA) towards 3,4-DHBA. This mutant was screened out from a PobA random mutagenesis library through a novel naked eye visual screening method. In vitro enzyme assay showed this mutant has a kcat/Km of 0.059 μM-1s-1 towards 3,4-DHBA, which was 4.92-fold higher than the reported mutant (Y385F/T294A PobA). Molecular docking simulation provided the mechanism explanation of the high activity. Expression of this mutant in E. coli BW25113 (F’) can generate 830 ± 33 mg/L GA from 1000 mg/L 3,4-DHBA. After that, we utilized this mutant to assemble a de novo GA biosynthetic pathway. Subsequently, this pathway was introduced into a 3,4-DHBA-producing strain (E. coli BW25113 (F’)ΔaroE) to achieve 301 ± 15 mg/L GA production from simple carbon sources. Similarly, assembling this mutant into a de novo pyrogallol biosynthetic pathway enabled 129 ± 15 mg/L pyrogallol production.ConclusionsThis work established an efficient screening method and generated a high active PobA mutant. Assembling this mutant into GA and pyrogallol biosynthetic pathways achieved the de novo production of these two compounds. Besides, this mutant has great potential for GA or pyrogallol derivatives production. The screening method could be used for other GA biosynthesis-related enzymes.


2018 ◽  
Author(s):  
Daoyi Guo ◽  
Lihua Zhang ◽  
Sijia Kong ◽  
Zhijie Liu ◽  
Xu Chu ◽  
...  

ABSTRACTIndole-3-acetic acid (IAA) is considered the most common and important naturally occurring auxin in plants and a major regulator of plant growth and development. In addition, phenylacetic acid (PAA) and 4-hydroxyphenylacetic acid (4HPA) can also play a role as auxin in some plants. In recent years, several microbes have been metabolically engineered to produce IAA from L-tryptophan. In this study, we showed that aminotransferasearo8and decarboxylasekdcfromSaccharomyces cerevisiae, and aldehyde dehydrogenasealdHfromEscherichia colihave broad substrate ranges and can catalyze the conversion of three kinds of aromatic amino acids (L-tryptophan, L-tyrosine or L-phenylalanine) to the corresponding IAA, 4HPA and PAA. Subsequently, three de novo biosynthetic pathways for the production of IAA, PAA and 4HPA from glucose were constructed inE. colithrough strengthening the shikimate pathway. This study described here shows the way for the development of agricultural microorganism for biosynthesis of plant auxin and promoting plant growth in the future.


2012 ◽  
Vol 393 (10) ◽  
pp. 1043-1054 ◽  
Author(s):  
Miha Renko ◽  
Jerica Sabotič ◽  
Dušan Turk

Abstract Protein protease inhibitors are the tools of nature in controlling proteolytic enzymes. They come in different shapes and sizes. The β-trefoil protease inhibitors that come from plants, first discovered by Kunitz, were later complemented with representatives from higher fungi. They inhibit serine (families S1 and S8) and cysteine proteases (families C1 and C13) as well as other hydrolases. Their versatility is the result of the plasticity of the loops coming out of the stable β-trefoil scaffold. For this reason, they display several different mechanisms of inhibition involving different positions of the loops and their combinations. Natural diversity, as well as the initial successes in de novo protein engineering, makes the β-trefoil proteins a promising starting point for the generation of strong, specific, multitarget inhibitors capable of inhibiting multiple types of hydrolytic enzymes and simultaneously interacting with different protein, carbohydrate, or DNA molecules. This pool of knowledge opens up new possibilities for the exploration of their naturally occurring as well as modified properties for applications in many fields of medicine, biotechnology, and agriculture.


2019 ◽  
Vol 22 (5) ◽  
pp. 346-354
Author(s):  
Yan A. Ivanenkov ◽  
Renat S. Yamidanov ◽  
Ilya A. Osterman ◽  
Petr V. Sergiev ◽  
Vladimir A. Aladinskiy ◽  
...  

Aim and Objective: Antibiotic resistance is a serious constraint to the development of new effective antibacterials. Therefore, the discovery of the new antibacterials remains one of the main challenges in modern medicinal chemistry. This study was undertaken to identify novel molecules with antibacterial activity. Materials and Methods: Using our unique double-reporter system, in-house large-scale HTS campaign was conducted for the identification of antibacterial potency of small-molecule compounds. The construction allows us to visually assess the underlying mechanism of action. After the initial HTS and rescreen procedure, luciferase assay, C14-test, determination of MIC value and PrestoBlue test were carried out. Results: HTS rounds and rescreen campaign have revealed the antibacterial activity of a series of Nsubstituted triazolo-azetidines and their isosteric derivatives that has not been reported previously. Primary hit-molecule demonstrated a MIC value of 12.5 µg/mL against E. coli Δ tolC with signs of translation blockage and no SOS-response. Translation inhibition (26%, luciferase assay) was achieved at high concentrations up to 160 µg/mL, while no activity was found using C14-test. The compound did not demonstrate cytotoxicity in the PrestoBlue assay against a panel of eukaryotic cells. Within a series of direct structural analogues bearing the same or bioisosteric scaffold, compound 2 was found to have an improved antibacterial potency (MIC=6.25 µg/mL) close to Erythromycin (MIC=2.5-5 µg/mL) against the same strain. In contrast to the parent hit, this compound was more active and selective, and provided a robust IP position. Conclusion: N-substituted triazolo-azetidine scaffold may be used as a versatile starting point for the development of novel active and selective antibacterial compounds.


2020 ◽  
Vol 14 (2) ◽  
pp. 121-133 ◽  
Author(s):  
Maryam Ahankoub ◽  
Gashtasb Mardani ◽  
Payam Ghasemi-Dehkordi ◽  
Ameneh Mehri-Ghahfarrokhi ◽  
Abbas Doosti ◽  
...  

Background: Genetically engineered microorganisms (GEMs) can be used for bioremediation of the biological pollutants into nonhazardous or less-hazardous substances, at lower cost. Polycyclic aromatic hydrocarbons (PAHs) are one of these contaminants that associated with a risk of human cancer development. Genetically engineered E. coli that encoded catechol 2,3- dioxygenase (C230) was created and investigated its ability to biodecomposition of phenanthrene and pyrene in spiked soil using high-performance liquid chromatography (HPLC) measurement. We revised patents documents relating to the use of GEMs for bioremediation. This approach have already been done in others studies although using other genes codifying for same catechol degradation approach. Objective: In this study, we investigated biodecomposition of phenanthrene and pyrene by a genetically engineered Escherichia coli. Methods: Briefly, following the cloning of C230 gene (nahH) into pUC18 vector and transformation into E. coli Top10F, the complementary tests, including catalase, oxidase and PCR were used as on isolated bacteria from spiked soil. Results: The results of HPLC measurement showed that in spiked soil containing engineered E. coli, biodegradation of phenanthrene and pyrene comparing to autoclaved soil that inoculated by wild type of E. coli and normal soil group with natural microbial flora, were statistically significant (p<0.05). Moreover, catalase test was positive while the oxidase tests were negative. Conclusion: These findings indicated that genetically manipulated E. coli can provide an effective clean-up process on PAH compounds and it is useful for bioremediation of environmental pollution with petrochemical products.


2021 ◽  
Vol 14 (3) ◽  
pp. 203 ◽  
Author(s):  
Shurong Hou ◽  
Juan Diez ◽  
Chao Wang ◽  
Christoph Becker-Pauly ◽  
Gregg B. Fields ◽  
...  

Meprin α and β are zinc-dependent proteinases implicated in multiple diseases including cancers, fibrosis, and Alzheimer’s. However, until recently, only a few inhibitors of either meprin were reported and no inhibitors are in preclinical development. Moreover, inhibitors of other metzincins developed in previous years are not effective in inhibiting meprins suggesting the need for de novo discovery effort. To address the paucity of tractable meprin inhibitors we developed ultrahigh-throughput assays and conducted parallel screening of >650,000 compounds against each meprin. As a result of this effort, we identified five selective meprin α hits belonging to three different chemotypes (triazole-hydroxyacetamides, sulfonamide-hydroxypropanamides, and phenoxy-hydroxyacetamides). These hits demonstrated a nanomolar to micromolar inhibitory activity against meprin α with low cytotoxicity and >30-fold selectivity against meprin β and other related metzincincs. These selective inhibitors of meprin α provide a good starting point for further optimization.


Sign in / Sign up

Export Citation Format

Share Document