De novo Induction of Genetically Engineered Brain Tumors in Mice Using Plasmid DNA

2009 ◽  
Vol 2009 ◽  
pp. 182-183
Author(s):  
G. Rao
2009 ◽  
Vol 69 (2) ◽  
pp. 431-439 ◽  
Author(s):  
Stephen M. Wiesner ◽  
Stacy A. Decker ◽  
Jon D. Larson ◽  
Katya Ericson ◽  
Colleen Forster ◽  
...  

2021 ◽  
Author(s):  
Caterina Bartolacci ◽  
Cristina Andreani ◽  
Goncalo Dias do Vale ◽  
Stefano Berto ◽  
Margherita Melegari ◽  
...  

Mutant KRAS (KM) is the most common oncogene in lung cancer (LC). KM regulates several metabolic networks, but their role in tumorigenesis is still not sufficiently characterized to be exploited in cancer therapy. To identify metabolic networks specifically deregulated in KMLC, we characterized the lipidome of genetically engineered LC mice, cell lines, patient derived xenografts and primary human samples. We also determined that KMLC, but not EGFR-mutant (EGFR-MUT) LC, is enriched in triacylglycerides (TAG) and phosphatidylcholines (PC). We also found that KM upregulates fatty acid synthase (FASN), a rate-limiting enzyme in fatty acid (FA) synthesis promoting the synthesis of palmitate and PC. We determined that FASN is specifically required for the viability of KMLC, but not of LC harboring EGFR-MUT or wild type KRAS. Functional experiments revealed that FASN inhibition leads to ferroptosis, a reactive oxygen species (ROS)-and iron-dependent cell death. Consistently, lipidomic analysis demonstrated that FASN inhibition in KMLC leads to accumulation of PC with polyunsaturated FA (PUFA) chains, which are the substrate of ferroptosis. Integrating lipidomic, transcriptome and functional analyses, we demonstrated that FASN provides saturated (SFA) and monounsaturated FA (MUFA) that feed the Lands cycle, the main process remodeling oxidized phospholipids (PL), such as PC. Accordingly, either inhibition of FASN or suppression of the Lands cycle enzymes PLA2 and LPCAT3, promotes the intracellular accumulation of lipid peroxides and ferroptosis in KMLC both in vitro and in vivo. Our work supports a model whereby the high oxidative stress caused by KM dictates a dependency on newly synthesized FA to repair oxidated phospholipids, establishing a targetable vulnerability. These results connect KM oncogenic signaling, FASN induction and ferroptosis, indicating that FASN inhibitors already in clinical trial in KMLC patients (NCT03808558) may be rapidly deployed as therapy for KMLC.


2021 ◽  
Vol 17 (1) ◽  
pp. 104-120
Author(s):  
N. Ivanenko

Relevance. Treatment of solid tumors and biofilm-derived infections face a common problem: drugs often fail to reach and kill cancer cells and microbial pathogens because of local microenvironment heterogeneities. There are remarkable challenges for current and prospective anticancer and antibiofilm agents to target and maintain activity in the microenvironments where cancer cells and microbial pathogens survive and cause the onset of disease. Bacterial infections in cancer formation will increase in the coming years. Collection of approaches such as ROS modulation in cells, the tumor is promoted by microbe’s inflammation can be a strategy to target cancer and bacteria. Besides that, bacteria may take the advantage of oxygen tension and permissive carbon sources, therefore the tumor microenvironment (TM) becomes a potential refuge for bacteria. It is noteworthy that the relationship between cancer and bacteria is intertwined. Objective: To analyze similarities between biofilm and tumor milieu that is produced against stress conditions and heterogeneous microenvironment for a combination of approaches the bacteriotherapy with chemotherapy which can help in defeating the tumor heterogeneity accompanied with malignancy, drug-resistance, and metastasis. Method: An analytical review of the literature on keywords from the scientometric databases PubMed, Wiley. Results: Bacteria evade antimicrobial treatment is mainly due to persistence that has become dormant during the stationary phase and tolerance. Drug-tolerant persisters and cellular dormancy are crucial in the development of cancer, especially in understanding the development of metastases as a late relapse. Biofilms are formed by groups of cells in different states, growing or non-growing and metabolically active or inactive in variable fractions, depending on maturity and on chemical gradients (O2 and nutrients) of the biofilms producing physiological heterogeneity. Heterogeneity in the microenvironment of cancer can be described as a non-cell autonomous driver of cancer cell diversity; in a highly diverse microenvironment, different cellular phenotypes may be selected for or against in different regions of the tumor. Hypoxia, oxidative stress, and inflammation have been identified as positive regulators of metastatic potential, drug resistance, and tumorigenic properties in cancer. It is proven that, Escherichia coli (E. coli) and life-threatening infectious pathogens such as Staphylococcus aureus (SA) and Mycobacterium tuberculosis (Mtb) are noticeably sensitive to alterations in the intracellular oxidative environment.  An alternative emerging paradigm is that many cancers may be promoted by commensal microbiota, either by translocation and adherence of microbes to cancer cells or by the distant release of inflammation-activating microbial metabolites. Microbial factors such as F. nucleatum, B. fragilis, and Enterobacteriaceae members may contribute to disease onset in patients with a hereditary form of colorectal cancer (CRC); familial adenomatous polyposis (FAP). These findings are linked with the creation of new biomarkers and therapy for identifying and treating biofilm-associated cancers.  Currently,  about 20% of neoplasms globally can be caused by infections, with  approximately 1.2 million cases annually. Several antineoplastic drugs that exhibited activity against S. mutans, including tamoxifen, doxorubicin, and ponatinib, also possessed activity against other Gram-positive bacteria. Drug repurposing, also known as repositioning, has gained momentum, mostly due to its advantages over de novo drug discovery, including reduced risk to patients due to previously documented clinical trials, lower drug development costs, and faster benchtop-to-clinic transition. Although many bacteria are carcinogens and tumor promoters, some have shown great potential towards cancer therapy. Several species of bacteria have shown an impressive power to penetrate and colonize solid tumors, which has mainly led to neoplasm slower growth and   tumor clearance.  Different strains of Clostridia, Lactococcus, Bifidobacteria, Shigella, Vibrio, Listeria, Escherichia, and Salmonella have been evaluated against cancer in animal models.  Conclusion. Cancer is a multifactorial disease and the use of bacteria for cancer therapy as an immunostimulatory agent or as a vector for carrying the therapeutic cargo is a promising treatment method. Therefore, the world has turned to an alternative solution, which is the use of genetically engineered microorganisms; thus, the use of living bacteria targeting cancerous cells is the unique option to overcome these challenges. Bacterial therapies, whether used alone or combination with chemotherapy, give a positive effect to treat multiple conditions of cancer.


2019 ◽  
Vol 220 (3) ◽  
pp. 411-419 ◽  
Author(s):  
Stuart P Adler ◽  
Nicole Lewis ◽  
Anthony Conlon ◽  
Mark P Christiansen ◽  
Mohamed Al-Ibrahim ◽  
...  

Abstract Background A conditionally replication-defective human cytomegalovirus (CMV) vaccine (V160) derived from AD169 and genetically engineered to express CMV pentameric complex (gH/gL/pUL128/pUL130/pUL131) was developed and evaluated for phase 1 vaccine safety and immunogenicity in CMV-seronegative and CMV-seropositive adults. Methods Subjects received 3 doses of V160 or placebo on day 1, month 1, and month 6. Four vaccine dose levels, formulated with or without aluminum phosphate adjuvant, were evaluated. Injection-site and systemic adverse events (AEs) and vaccine viral shedding were monitored. CMV-specific cellular and humoral responses were measured by interferon-gamma ELISPOT and virus neutralization assay up to 12 months after last dose. Results V160 was generally well-tolerated, with no serious AEs observed. Transient, mild-to-moderate injection-site and systemic AEs were reported more frequently in vaccinated subjects than placebo. Vaccine viral shedding was not detected in any subject, confirming the nonreplicating feature of V160. Robust neutralizing antibody titers were elicited and maintained through 12 months postvaccination. Cellular responses to structural and nonstructural viral proteins were observed, indicating de novo expression of viral genes postvaccination. Conclusions V160 displayed an acceptable safety profile. Levels of neutralizing antibodies and T-cell responses in CMV-seronegative subjects were within ranges observed following natural CMV infection. Clinical Trial Registration . NCT01986010.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1633 ◽  
Author(s):  
Victor Ruiz-Rodado ◽  
Tomohiro Seki ◽  
Tyrone Dowdy ◽  
Adrian Lita ◽  
Meili Zhang ◽  
...  

Understanding the metabolic reprogramming of aggressive brain tumors has potential applications for therapeutics as well as imaging biomarkers. However, little is known about the nutrient requirements of isocitrate dehydrogenase 1 (IDH1) mutant gliomas. The IDH1 mutation involves the acquisition of a neomorphic enzymatic activity which generates D-2-hydroxyglutarate from α-ketoglutarate. In order to gain insight into the metabolism of these malignant brain tumors, we conducted metabolic profiling of the orthotopic tumor and the contralateral regions for the mouse model of IDH1 mutant glioma; as well as to examine the utilization of glucose and glutamine in supplying major metabolic pathways such as glycolysis and tricarboxylic acid (TCA). We also revealed that the main substrate of 2-hydroxyglutarate is glutamine in this model, and how this re-routing impairs its utilization in the TCA. Our 13C tracing analysis, along with hyperpolarized magnetic resonance experiments, revealed an active glycolytic pathway similar in both regions (tumor and contralateral) of the brain. Therefore, we describe the reprogramming of the central carbon metabolism associated with the IDH1 mutation in a genetically engineered mouse model which reflects the tumor biology encountered in glioma patients.


2012 ◽  
Vol 97 (2) ◽  
pp. 611-620 ◽  
Author(s):  
Geisa A. L. Gonçalves ◽  
Duarte M. F. Prazeres ◽  
Gabriel A. Monteiro ◽  
Kristala L. J. Prather
Keyword(s):  
De Novo ◽  
E Coli ◽  

2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i29-i30
Author(s):  
Hector Mendez-Gomez ◽  
James McGuiness ◽  
Adam grippin ◽  
Frances Weidert ◽  
Sheila Carrera-Justiz ◽  
...  

Abstract Background Since the preponderance of pediatric gliomas are mutationally ‘bland,’ immune checkpoint inhibitors are unlikely to mediate therapeutic benefit. Alternately, immunologic response can be induced de novo against pediatric gliomas with mRNA cancer vaccines. Messenger RNA represents a paradigm shift in vaccinology (i.e. COVID-19) given its flexibility, commercialization, and propensity to confer rapid protection with only a single vaccine. Objective We sought to develop a new mRNA platform with an optimized backbone for insertion of both personalized and/or “off the shelf’ (i.e. H3K27M) transcripts for rapid induction of anti-tumor activity against pediatric gliomas. Approach We synthesized an mRNA backbone with optimized 5’ and 3’ UTRs for delivery of gene transcripts pertinent to pediatric brain tumors using a lipid-nanoparticle (NP) delivery vehicle. This vaccine utilizes a novel engineering design that layers tumor derived mRNA into a lipid-nanoparticle (NP) “onion-like” or multi-lamellar package. Results We demonstrate immunogenicity of RNA-NPs delivering either personalized glioma mRNA or H3K27M mRNA. RNA-NPs localize to myeloid cells in murine KR158b brain tumors and activate dendritic cells that supplant regulatory intratumoral myeloid populations inducing antigen-recall response with long-term survivor benefit. Our optimized mRNA backbone yielded significantly improved anti-tumor efficacy compared with commercial backbones. We have shown this approach can be refined for co-delivery of immunomodulatory RNAs (i.e. GM-CSF) and/or delivery of siRNAs targeting immunoregulatory axes (PD-L1) in murine brain tumors (GL261). We have since established safety of RNA-NPs in acute/chronic murine GLP toxicity studies without cross-reactivity to normal-brain, and launched a large-animal canine brain tumor trial which demonstrated RNA-NPs to be feasible, safe and immunologically active. Conclusion RNA-NPs reprogram the brain tumor microenvironment while inducing a glioma-specific immune response. We have since received FDA-IND approval for first-in-human trials (IND#BB-19304) in pediatric patients with high-grade gliomas (PNOC020 study, NCT04573140).


2021 ◽  
Vol 12 ◽  
Author(s):  
Michael Pisano ◽  
Yan Cheng ◽  
Fumou Sun ◽  
Binod Dhakal ◽  
Anita D’Souza ◽  
...  

Mouse models of human cancer provide an important research tool for elucidating the natural history of neoplastic growth and developing new treatment and prevention approaches. This is particularly true for multiple myeloma (MM), a common and largely incurable neoplasm of post-germinal center, immunoglobulin-producing B lymphocytes, called plasma cells, that reside in the hematopoietic bone marrow (BM) and cause osteolytic lesions and kidney failure among other forms of end-organ damage. The most widely used mouse models used to aid drug and immunotherapy development rely on in vivo propagation of human myeloma cells in immunodeficient hosts (xenografting) or myeloma-like mouse plasma cells in immunocompetent hosts (autografting). Both strategies have made and continue to make valuable contributions to preclinical myeloma, including immune research, yet are ill-suited for studies on tumor development (oncogenesis). Genetically engineered mouse models (GEMMs), such as the widely known Vκ*MYC, may overcome this shortcoming because plasma cell tumors (PCTs) develop de novo (spontaneously) in a highly predictable fashion and accurately recapitulate many hallmarks of human myeloma. Moreover, PCTs arise in an intact organism able to mount a complete innate and adaptive immune response and tumor development reproduces the natural course of human myelomagenesis, beginning with monoclonal gammopathy of undetermined significance (MGUS), progressing to smoldering myeloma (SMM), and eventually transitioning to frank neoplasia. Here we review the utility of transplantation-based and transgenic mouse models of human MM for research on immunopathology and -therapy of plasma cell malignancies, discuss strengths and weaknesses of different experimental approaches, and outline opportunities for closing knowledge gaps, improving the outcome of patients with myeloma, and working towards a cure.


Sign in / Sign up

Export Citation Format

Share Document