Banana waste as substrate for α-amylase production by Bacillus subtilis (CBTK 106) under solid-state fermentation

1996 ◽  
Vol 46 (2) ◽  
pp. 106-111 ◽  
Author(s):  
C. Krishna ◽  
M. Chandrasekaran
Author(s):  
C. N. Obi ◽  
O. Okezie ◽  
A. N. Ezugwu

This study evaluated amylase production by Bacillus species employing the solid state fermentation (SSF) method using five agro-industrial wastes namely corn cobs, potato peel and maize straw, groundnut husk and corn chaff. Five Bacillus species were tested for amylase production abilities and Bacillus subtilis showed the highest amylase production ability after incubation. Corn chaff gave maximum enzyme production (3.25 U/ml) while the least enzyme was recorded on groundnut husk (2.35 U/ml) at 25. Potato peel had maximum enzyme production by Bacillus subtilis (3.05 U/ml) at pH 7.0 while the least enzyme production was from groundnut husk (2.84 U/ml) at pH 4.0.Thus there was an increase in enzyme production with corresponding increase in substrate concentration. The results obtained in this study support the suitability of using agro-industrial wastes as solid state fermentation substrates for high production of amylase. It’s also a means of solving pollution problems thus making solid state fermentation an attractive method.


2020 ◽  
Vol 32 (2) ◽  
pp. 1555-1561 ◽  
Author(s):  
Taghreed N. Almanaa ◽  
P. Vijayaraghavan ◽  
Naiyf S. Alharbi ◽  
Shine Kadaikunnan ◽  
Jamal M. Khaled ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Hamid Mukhtar ◽  
Ikramul Haq

The present study describes the screening of different agroindustrial byproducts for enhanced production of alkaline protease by a wild and EMS induced mutant strain ofBacillus subtilisIH-72EMS8. During submerged fermentation, different agro-industrial byproducts were tested which include defatted seed meals of rape, guar, sunflower, gluten, cotton, soybean, and gram. In addition to these meals, rice bran, wheat bran, and wheat flour were also evaluated for protease production. Of all the byproducts tested, soybean meal at a concentration of 20 g/L gave maximum production of the enzyme, that is, 5.74  ±  0.26 U/mL from wild and 11.28  ±  0.45 U/mL from mutant strain, during submerged fermentation. Different mesh sizes (coarse, medium, and fine) of the soybean meal were also evaluated, and a finely ground soybean meal (fine mesh) was found to be the best. In addition to the defatted seed meals, their alkali extracts were also tested for the production of alkaline protease byBacillus subtilis, but these were proved nonsignificant for enhanced production of the enzyme. The production of the enzyme was also studied in solid state fermentation, and different agro-industrial byproducts were also evaluated for enzyme production. Wheat bran partially replaced with guar meal was found as the best substrate for maximum enzyme production under solid state fermentation conditions.


2013 ◽  
Vol 14 (1) ◽  
pp. 67-74
Author(s):  
Bina Gautam ◽  
Tika B Karki ◽  
Om Prakash Panta

Amylase is an amylolytic enzyme used in food industry which is generally produced by Aspergillus spp. under solid state fermentation. The present study is concerned with the isolation, screening and selection of suitable strains of Aspergillus spp. and optimization of cultural conditions for the biosynthesis of amylase. Rice and wheat brans were used as substrates which are readily available inexpensive raw materials for amylase production. From 85 samples of rice and wheat grains, 55 colonies obtained on potato dextrose agar (PDA) were suspected to be Aspergillus oryzae and only 35 colonies possessed the morphological characteristics similar to that of A. oryzae indicating the isolates were most likely the strains of A. oryzae. Of all the fungal isolates of Aspergillus spps., Asp.31 gave maximum production of amylase (720.782 IUgds-1) in solid state fermentation media. This strain was selected as a parental strain for optimization for cultural conditions. The obtained data were analyzed using SPSS- 11.5 program. Of all the substrates (rice bran, wheat bran and their mixture), rice bran was the best for producing amylase of highest activity 611.614 IUgds-1.The highest enzyme activity of 698.749 IUgds-1 was observed at 50% initial moisture level of the substrate. The optimum temperature was 25°C for producing the crude amylase enzyme with amylase activity of 577.757 IUgds-1. Nepal Journal of Science and Technology Vol. 14, No. 1 (2013) 67-74 DOI: http://dx.doi.org/10.3126/njst.v14i1.8924


Fermentation ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. 52 ◽  
Author(s):  
Yong Xing Tan ◽  
Wai Kit Mok ◽  
Jaslyn Lee ◽  
Jaejung Kim ◽  
Wei Ning Chen

Brewers’ spent grains (BSG) are underutilized food waste materials produced in large quantities from the brewing industry. In this study, solid state fermentation of BSG using Bacillus subtilis WX-17 was carried out to improve the nutritional value of BSG. Fermenting BSG with the strain WX-17, isolated from commercial natto, significantly enhanced the nutritional content in BSG compared to unfermented BSG, as determined by the marked difference in the level of metabolites. In total, 35 metabolites showed significant difference, which could be categorized into amino acids, fatty acids, carbohydrates, and tricarboxylic acid cycle intermediates. Pathway analysis revealed that glycolysis was upregulated, as indicated by the drop in the level of carbohydrate compounds. This shifted the metabolic flux particularly towards the amino acid pathway, leading to a 2-fold increase in the total amount of amino acid from 0.859 ± 0.05 to 1.894 ± 0.1 mg per g of BSG after fermentation. Also, the total amount of unsaturated fatty acid increased by 1.7 times and the total antioxidant quantity remarkably increased by 5.8 times after fermentation. This study demonstrates that novel fermentation processes can value-add food by-products, and valorized food waste could potentially be used for food-related applications. In addition, the study revealed the metabolic changes and mechanisms behind the microbial solid state fermentation of BSG.


Sign in / Sign up

Export Citation Format

Share Document