The promoter of an antifungal protein gene from Gastrodia elata confers tissue - specific and fungus-inducible expression patterns and responds to both salicylic acid and jasmonic acid

2003 ◽  
Vol 22 (1) ◽  
pp. 79-84 ◽  
Author(s):  
Q. Sa ◽  
Y. Wang ◽  
W. Li ◽  
L. Zhang ◽  
Y. Sun
2021 ◽  
Vol 12 ◽  
Author(s):  
David H. Fresno ◽  
Sergi Munné-Bosch

Sweet cherry is an important non-climacteric fruit with a high commercial interest, but exploitation of sweet cherry trees (Prunus avium L.) in orchards is usually subject to important economic losses due to fruit decay by pathogenic fungi and other microorganisms. Sweet cherries development and ripening are characterized by profound physiological changes in the fruit, among which the phytohormone abscisic acid (ABA) plays a pivotal role. In addition, sweet cherries are usually affected by fruit decay pathogens, and the role of other stress-related hormones such as jasmonic acid (JA) and salicylic acid (SA) may also be of paramount importance, not only from a developmental point of view, but also from a fruit-microbe interaction perspective. Here, a tissue-specific hormone quantification by LC-MS/MS, including the contents of JA, SA, and ABA, in the fruit exocarp and mesocarp of sweet cherries during fruit development from trees growing in a commercial orchard was carried out. Additionally, this study was complemented with the characterization of the culturable epiphytic and endophytic microbial communities of sweet cherries at various stages of fruit development and during cracking lesion formation. Our results revealed a completely differential behavior of phytohormones between both tissues (the exocarp and mesocarp), with a more dynamic exocarp in front of a more stable mesocarp, and with marked variations during fruit development. Microbial epiphytic community was mainly composed by yeasts, although rot-causing fungi like Alternaria spp. were always also present throughout fruit development. Endophytic colonization was poor, but it increased throughout fruit development. Furthermore, when the exocarp was naturally disrupted in sweet cherries suffering from cracking, the colonization by Alternaria spp. markedly increased. Altogether, results suggest that the fruit exocarp and mesocarp are very dynamic tissues in which endogenous phytohormones not only modulate fruit development and ripening but also fruit-microbe interactions.


2019 ◽  
Vol 14 (7) ◽  
pp. 602-613 ◽  
Author(s):  
Maryam Mortezaeefar ◽  
Reza Fotovat ◽  
Farid Shekari ◽  
Shahryar Sasani

Background: Plants respond to various stresses at the same time. Recent studies show that interactions of various phytohormones can play important roles in response to stresses. Objective: Although many studies have been done about the effects of the individual hormones, little information exists about the crosstalk among the hormone signalling pathways in plants. Methods: In this work, the weighted gene co-expression network analysis method was used to define modules containing genes with highly correlated expression patterns in response to abscisic acid, jasmonic acid, and salicylic acid in Arabidopsis. Results: Results indicate that plant hormones cause major changes the expression profile and control diverse cell functions, including response to environmental stresses and external factors, cell cycle, and antioxidant activity. In addition, AtbHLH15 and HY5 transcription factors can participate in phytochrome pathways in response to the phytohormones. It is probable that some Type III WRKY transcription factors control the response to bacterium separately from the other stresses. The E2Fa/DPa transcription factor also regulates the cell cycle. Conclusion: In general, many processes and pathways in plants may be regulated using a combination of abscisic acid, jasmonic acid, and salicylic acid.


2013 ◽  
Author(s):  
AL Bookout ◽  
Y Jeong ◽  
M Downes ◽  
RT Yu ◽  
RM Evans ◽  
...  

Author(s):  
Huaming He ◽  
Jordi Denecker ◽  
Katrien Van Der Kelen ◽  
Patrick Willems ◽  
Robin Pottie ◽  
...  

Abstract Signaling events triggered by hydrogen peroxide (H2O2) regulate plant growth and defense by orchestrating a genome-wide transcriptional reprogramming. However, the specific mechanisms that govern H2O2-dependent gene expression are still poorly understood. Here, we identify the Arabidopsis Mediator complex subunit MED8 as a regulator of H2O2 responses. The introduction of the med8 mutation in a constitutive oxidative stress genetic background (catalase-deficient, cat2) was associated with enhanced activation of the salicylic acid pathway and accelerated cell death. Interestingly, med8 seedlings were more tolerant to oxidative stress generated by the herbicide methyl viologen (MV) and exhibited transcriptional hyperactivation of defense signaling, in particular salicylic acid- and jasmonic acid-related pathways. The med8-triggered tolerance to MV was manipulated by the introduction of secondary mutations in salicylic acid and jasmonic acid pathways. In addition, analysis of the Mediator interactome revealed interactions with components involved in mRNA processing and microRNA biogenesis, hence expanding the role of Mediator beyond transcription. Notably, MED8 interacted with the transcriptional regulator NEGATIVE ON TATA-LESS, NOT2, to control the expression of H2O2-inducible genes and stress responses. Our work establishes MED8 as a component regulating oxidative stress responses and demonstrates that it acts as a negative regulator of H2O2-driven activation of defense gene expression.


2002 ◽  
Vol 277 (20) ◽  
pp. 17589-17596 ◽  
Author(s):  
Marie Kannius-Janson ◽  
Eva M. Johansson ◽  
Gunnar Bjursell ◽  
Jeanette Nilsson

1993 ◽  
Vol 21 (18) ◽  
pp. 4259-4267 ◽  
Author(s):  
Michael Friedmann ◽  
Laurel T. Holth ◽  
Huda Y. Zoghbi ◽  
Raymond Reeves

2011 ◽  
Vol 6 (2-3) ◽  
pp. 99-101 ◽  
Author(s):  
Andrea Occhipinti ◽  
Simon Atsbaha Zebelo ◽  
Andrea Capuzzo ◽  
Massimo Maffei ◽  
Giorgio Gnavi
Keyword(s):  

2003 ◽  
Vol 16 (11) ◽  
pp. 1022-1029 ◽  
Author(s):  
Pradeep Kachroo ◽  
Aardra Kachroo ◽  
Ludmila Lapchyk ◽  
David Hildebrand ◽  
Daniel F. Klessig

The Arabidopsis mutants ssi2 and fab2 are defective in stearoyl ACP desaturase, which causes altered salicylic acid (SA)- and jasmonic acid (JA)-mediated defense signaling. Both ssi2 and fab2 plants show spontaneous cell death, express PR genes constitutively, accumulate high levels of SA, and exhibit enhanced resistance to bacterial and oomycete pathogens. In contrast to constitutive activation of the SA pathway, ssi2 and fab2 plants are repressed in JA-mediated induction of the PDF1.2 gene, which suggests that the SSI2-mediated signaling pathway modulates cross talk between the SA and JA pathways. In this study, we have characterized two recessive nonallelic mutants in the ssi2 background, designated as rdc (restorer of defective cross talk) 2 and rdc8. Both ssi2 rdc mutants are suppressed in constitutive SA signaling, show basal level expression of PR-1 gene, and induce high levels of PDF1.2 in response to exogenous application of JA. Interestingly, while the rdc8 mutation completely abolishes spontaneous cell death in ssi2 rdc8 plants, the ssi2 rdc2 plants continue to show some albeit reduced cell death. Fatty acid (FA) analysis showed a reduction in 16:3 levels in ssi2 rdc8 plants, which suggests that this mutation may limit the flux of FAs into the pro-karyotic pathway of glycerolipid biosynthesis. Both rdc2 and rdc8 continue to accumulate high levels of 18:0, which suggests that 18:0 levels were responsible for neither constitutive SA signaling nor repression of JA-induced expression of the PDF1.2 gene in ssi2 plants. We also analyzed SA and JA responses of the fab2-derived shs1 mutant, which accumulates levels of 18:0 over 50% lower than those in the fab2 plants. Even though fab2 shs1 plants were morphologically bigger than fab2 plants, they expressed PR genes constitutively, showed HR-like cell death, and accumulated elevated levels of SA. However, unlike the ssi2 rdc plants, fab2 shs1 plants were unable to induce high levels of PDF1.2 expression in response to exogenous application of JA. Together, these results show that defective cross talk in ssi2 can be restored by second site mutations and is independent of morphological size of the plants, cell death, and elevated levels of 18:0.


Sign in / Sign up

Export Citation Format

Share Document