scholarly journals Differential Tissue-Specific Jasmonic Acid, Salicylic Acid, and Abscisic Acid Dynamics in Sweet Cherry Development and Their Implications in Fruit-Microbe Interactions

2021 ◽  
Vol 12 ◽  
Author(s):  
David H. Fresno ◽  
Sergi Munné-Bosch

Sweet cherry is an important non-climacteric fruit with a high commercial interest, but exploitation of sweet cherry trees (Prunus avium L.) in orchards is usually subject to important economic losses due to fruit decay by pathogenic fungi and other microorganisms. Sweet cherries development and ripening are characterized by profound physiological changes in the fruit, among which the phytohormone abscisic acid (ABA) plays a pivotal role. In addition, sweet cherries are usually affected by fruit decay pathogens, and the role of other stress-related hormones such as jasmonic acid (JA) and salicylic acid (SA) may also be of paramount importance, not only from a developmental point of view, but also from a fruit-microbe interaction perspective. Here, a tissue-specific hormone quantification by LC-MS/MS, including the contents of JA, SA, and ABA, in the fruit exocarp and mesocarp of sweet cherries during fruit development from trees growing in a commercial orchard was carried out. Additionally, this study was complemented with the characterization of the culturable epiphytic and endophytic microbial communities of sweet cherries at various stages of fruit development and during cracking lesion formation. Our results revealed a completely differential behavior of phytohormones between both tissues (the exocarp and mesocarp), with a more dynamic exocarp in front of a more stable mesocarp, and with marked variations during fruit development. Microbial epiphytic community was mainly composed by yeasts, although rot-causing fungi like Alternaria spp. were always also present throughout fruit development. Endophytic colonization was poor, but it increased throughout fruit development. Furthermore, when the exocarp was naturally disrupted in sweet cherries suffering from cracking, the colonization by Alternaria spp. markedly increased. Altogether, results suggest that the fruit exocarp and mesocarp are very dynamic tissues in which endogenous phytohormones not only modulate fruit development and ripening but also fruit-microbe interactions.

2000 ◽  
Vol 125 (3) ◽  
pp. 282-287 ◽  
Author(s):  
Satoru Kondo ◽  
Akihiro Tomiyama ◽  
Hideharu Seto

Trans-jasmonic acid (JA), cis-JA, and trans-methyl jasmonate (MeJA) were quantified in pulp and seeds of `Tsugaru' apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] and `Satohnishiki' sweet cherry (Prunus avium L.). Trans-JA and cis-JA showed similar changes during development in both types of fruit. JA concentration was high in the early growth stages of apple pulp development, decreased with days after full bloom (DAFB), and then increased again during maturation. There was an initial decrease in concentration of MeJA in apple pulp, followed by a general increase towards harvest. Concentrations of JA and MeJA in the pulp of sweet cherry were high during early growth stages, then decreased towards harvest. PDJ treatment at 104 DAFB (preclimacteric stage) increased endogenous abscisic acid concentration and anthocyanin concentration at 122 and 131 DAFB (maturation stages) in apple. JA concentration in apple seeds was also high in the early growth stages, then decreased, and finally peaked at harvest. MeJA concentration in apple seeds increased towards harvest. In the seeds of sweet cherry, JA and MeJA concentrations generally increased until harvest. In both types of fruit, concentrations of JA and MeJA in the seeds were higher than those of pulp. On a dry weight basis, changes in concentration in the seeds preceded those in the pulp. These results demonstrate that relatively high amounts of JA and MeJA are associated with young developing fruit. These substances may have a role in regulation of fruit growth at early growth stages, though this has not been demonstrated. Chemical name used: n-propyl dihydrojasmonate (PDJ).


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1248
Author(s):  
Tapan Kumar Mohanta ◽  
Yugal Kishore Mohanta ◽  
Dhananjay Yadav ◽  
Abeer Hashem ◽  
Elsayed Fathi Abd_Allah ◽  
...  

The lines of research conducted within a country often reflect its focus on current and future economic needs. Analyzing “search” trends on the internet can provide important insight into predicting the direction of a country in regards to agriculture, health, economy, and other areas. ‘Google Trends’ collects data on search terms from different countries, and this information can be used to better understand sentiments in different countries and regions. Agricultural output is responsible for feeding the world and there is a continuous quest to find ways to make agriculture more productive, safe, and reliable. The application of phytohormones has been used in agriculture world-wide for many years to improve crop production and continues to be an active area of research for the application in plants. Therefore, in the current study, we searched ‘Google Trends’ using the phytohormone search terms, abscisic acid, auxins, brassinosteroids, cytokinin, ethylene, gibberellins, jasmonic acid, salicylic acid, and strigolactones. The results indicated that the African country Zambia had the greatest number of queries on auxin research, and Kenya had the most queries in cytokinin and gibberellin research world-wide. For other phytohormones, India had the greatest number of queries for abscisic acid and South Korea had the greatest number of ethylene and jasmonic acid search world-wide. Queries on salicylic acid have been continuously increasing while the least number of queries were related to strigolactones. Only India and United States of America had significant numbers of queries on all nine phytohormones while queries on one or more phytohormones were absent in other countries. India is one of the top five crop-producing countries in the world for apples, millet, orange, potato, pulses, rice, sugarcane, tea, and wheat. Similarly, the United States of America is one of the top five crop-producing countries of the world for apples, grapes, maze, orange, potato, sorghum, sugarcane, and wheat. These might be the most possible factors for the search queries found for all the nine phytohormones in India and the United States of America.


Author(s):  
Mahesh S. Dashyal M. P. Basavarajappa ◽  
G. Manjunath D. P. Prakash ◽  
Sayeed Wajeed R. Mulla Anita Rajkumar Ghandhe

Bacterial blight in pomegranate is a major disease caused by Xanthomonas axonopodis pv. punicae, which has resulted in significant economic losses in terms of both quality and quantity. The ineffectiveness of most chemicals in controlling this disease has shifted grower attention to the quest for a new molecule and hence the use of plant growth regulators and signaling molecules is a novel approach to control the disease as well as improving quality and quantity attributes of pomegranate. Hence, the aim of present study was to determine the impact of plant hormones like ethylene, jasmonic acid and salicylic acid on bacterial blight of pomegranate. Among different hormones applied, ethrel application shown maximum disease severity (33.2%) and salicylic acid shown lowest disease severity (15.08%) under greenhouse condition.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2020
Author(s):  
Juan D. Villavicencio ◽  
Juan P. Zoffoli ◽  
Anne Plotto ◽  
Carolina Contreras

An herbaceous/grassy-like flavor has been reported by Chilean producers of Regina sweet cherry. There are no previous academic reports related to this flavor occurrence. Sweet cherries from five phenological stages were collected from six orchards with high herbaceous flavor incidence spanning Chilean production zones during the 2019/2020 season. Four experienced panelists tasted the fruit to identify the off-flavor incidence and intensity from four phenological stages, and the same cherries were analyzed for volatile compounds. Thirty-nine volatiles were identified and semi-quantified using solid-phase microextraction (SPME) and GC-MS. The highest off-flavor incidence was found at the bright red (stage 3) and mahogany colors (stage 4). No single volatile explained the herbaceous flavor consistently among orchards. However, it appeared that the off-flavor was related to delayed ripening in cherries, with more C6 aldehydes and less esters. Furthermore, rainfall and the elevation of the orchard had a significant effect on the incidence of off-flavor. Preharvest practices that promote fruit ripening along with avoiding early harvests are recommended to reduce the incidence of herbaceous flavor in Regina.


2021 ◽  
Author(s):  
Gegen Bao ◽  
Shengyu Li ◽  
Qi Zhou ◽  
Umair Ashraf ◽  
Jingxuan Qiao ◽  
...  

Abstract Background Aluminum (Al) contamination inhibits plant growth and development, however, mechanisms involved in Al stress tolerance in peanut (Arachis hypogaea L.) were rarely studied. The present study was comprised of four Al levels i.e., 0, 1.25, 2.5 and 5 mmol l−1 AlCl3.18H2O regarded as Al0, Al1, Al2, and Al3. The respective concentrations were added in Hoagland nutrient solution and replaced every three days. Result Results revealed that seeding length low Al concentration (Al1) treatment had no noticeable effect on seeding lenght, while higher Al concentration (Al2 and Al3) treatment significantly inhibited seeding lenght. The differentially expressed genes (DEGs) of plant hormone metabolism pathway were significantly enriched whereas the contents of salicylic acid (SA) and abscisic acid (ABA) were up-regulated, and jasmonic acid (JA) were down-regulated to different levels. Moreover, transcription factors (TFs) and ALMT9 and FRDL1 genes were up-regulated at higher Al concentration and down-regulated at the lowest Al concentration (Al1). Conclusions Overall, Higher Al concentrations up-regulated the expression of transcription factors (TFs), and ALMT9 and FRDL1 genes to resist the stress of high Al concentrations whereas transcriptome analysis revealed that Al stress tolerance is closely related to endogenous hormone contents i.e., salicylic acid (SA), abscisic acid (ABA), and jasmonic acid (JA). This study preliminarily analyzed the molecular mechanism of Al tolerance in peanut and provided a theoretical rationale for developing new Al-tolerant peanut cultivars.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 396
Author(s):  
Yu-Lei Zhang ◽  
Qing-Liang Cui ◽  
Yu Wang ◽  
Fei Shi ◽  
Hua Fan ◽  
...  

Sweet cherry has many cultivars with different storability and nutritional properties. To reveal the reasons for the differences in storability among cultivars and improve the quality of sweet cherries, the surface microstructure of four representative sweet cherry cultivars (Red Light, Ranier, Red Agate, Friendship) epidermis and peduncle at harvest were examined and the effects of carboxymethyl chitosan-gelatin (CMCS-GL) based edible coating incorporating CaCl2 and ascorbic acid (AA) (AA-CaCl2-CMCS-GL) on the quality and nutritional characteristics of sweet cherry were evaluated. Results showed there were significant differences in the wax distribution of the epidermis and the number of stomata on the peduncle surface between four cultivars of sweet cherries at harvest, which was closely related to fruit decay ratio during storage. AA-CaCl2-CMCS-GL coating delayed the onset of decay and the fruit decay ratio in coated groups (3.0%–15.3%) was significantly lower than in control groups (17.7%–63.0%) after 33 d storage. The coating also helped to maintain the quality and nutritional characteristics of four sweet cherry cultivars, including reducing weight loss, maintaining better skin color, peduncle freshness, higher fruit firmness, titratable acidity, AA, total phenolics content, total anthocyanins concentration, and antioxidant capacity. These results suggested that AA-CaCl2-CMCS-GL coating could be considered as a new preservation method for improving postharvest quality and nutritional properties of different sweet cherry cultivars.


Sign in / Sign up

Export Citation Format

Share Document