The stay-green phenotype of wheat mutant tasg1 is associated with altered cytokinin metabolism

2015 ◽  
Vol 35 (3) ◽  
pp. 585-599 ◽  
Author(s):  
Wenqiang Wang ◽  
Qunqun Hao ◽  
Fengxia Tian ◽  
Qinxue Li ◽  
Wei Wang
2013 ◽  
Vol 39 (6) ◽  
pp. 1096 ◽  
Author(s):  
Dong-Qing YANG ◽  
Zhen-Lin WANG ◽  
Yan-Ping YIN ◽  
Ying-Li NI ◽  
Wei-Bing YANG ◽  
...  

2013 ◽  
Vol 38 (9) ◽  
pp. 1592-1606 ◽  
Author(s):  
Su-Jie SONG ◽  
Jia-Yu GU ◽  
Hui-Jun GUO ◽  
Lin-Shu ZHAO ◽  
Shi-Rong ZHAO ◽  
...  

Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 255
Author(s):  
Wenjing Li ◽  
Yu Gao ◽  
Yinglu Hu ◽  
Juhong Chen ◽  
Jinping Zhang ◽  
...  

The bean bug, Riptortus pedestris, is a major pest of soybeans. In order to assess the critical stages of soybean damage by R. pedestris, we tested the damage to soybeans at different growth stages (R2, R4, and R6) caused by five densities of R. pedestris (1, 2, 3, 4, and 5) through a field cage experiment. The results show that the R4 stage was the most sensitive stage in terms of suffering R. pedestris injury damage, followed by the R6 stage and then the R2 stage. The number of stay green leaves was 7.04 per plant, the abortive pod rate of the soybeans was 56.36%, and the abortive seed rate of the soybeans was 46.69%. The dry weight of the soybeans was 14.20 g at the R4 stage; these values of R4 were significantly higher than at the R2 and R6 stages. However, the dry weight of soybean seed was 4.27 g and the nutrient transfer rate was 27.01% in the R4 stage; these values were significantly lower than in the R2 and R6 stages. The number of stay green leaves, abortive pod rates, and abortive seed rates were all increased significantly with increasing pest density at each stage of soybean growth. However, the nutrient transfer rate was significantly decreased with the increase in the pest density. Soybean nutrition factors changed after they suffered R. pedestris injury; the lipid content of the soybean seed decreased and the lipid content of the soybean plant increased compared to controls, when tested with a density of five R. pedestris in the R4 stage. These results will be beneficial to the future management of R. pedestris in soybean fields.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 43
Author(s):  
Adeel Khan ◽  
Munir Ahmad ◽  
Mukhtar Ahmed ◽  
M. Iftikhar Hussain

Temperature across the globe is increasing continuously at the rate of 0.15–0.17 °C per decade since the industrial revolution. It is influencing agricultural crop productivity. Therefore, thermotolerance strategies are needed to have sustainability in crop yield under higher temperature. However, improving thermotolerance in the crop is a challenging task for crop scientists. Therefore, this review work was conducted with the aim of providing information on the wheat response in three research areas, i.e., physiology, breeding, and advances in genetics, which could assist the researchers in improving thermotolerance. The optimum temperature for wheat growth at the heading, anthesis, and grain filling duration is 16 ± 2.3 °C, 23 ± 1.75 °C, and 26 ± 1.53 °C, respectively. The high temperature adversely influences the crop phenology, growth, and development. The pre-anthesis high temperature retards the pollen viability, seed formation, and embryo development. The post-anthesis high temperature declines the starch granules accumulation, stem reserve carbohydrates, and translocation of photosynthates into grains. A high temperature above 40 °C inhibits the photosynthesis by damaging the photosystem-II, electron transport chain, and photosystem-I. Our review work highlighted that genotypes which can maintain a higher accumulation of proline, glycine betaine, expression of heat shock proteins, stay green and antioxidant enzymes activity viz., catalase, peroxidase, super oxide dismutase, and glutathione reductase can tolerate high temperature efficiently through sustaining cellular physiology. Similarly, the pre-anthesis acclimation with heat treatment, inorganic fertilizer such as nitrogen, potassium nitrate and potassium chloride, mulches with rice husk, early sowing, presoaking of a 6.6 mM solution of thiourea, foliar application of 50 ppm dithiothreitol, 10 mg per kg of silicon at heading and zinc ameliorate the crop against the high temperature. Finally, it has been suggested that modern genomics and omics techniques should be used to develop thermotolerance in wheat.


2021 ◽  
Author(s):  
Guddimalli Rajasheker ◽  
Somanaboina Anil Kumar ◽  
Palle Surender Reddy ◽  
Sujatha Edupuganti ◽  
Divya Kummari ◽  
...  

Plant Science ◽  
2021 ◽  
pp. 110902
Author(s):  
Ying Chen ◽  
Wataru Yamori ◽  
Ayumi Tanaka ◽  
Ryouichi Tanaka ◽  
Hisashi Ito

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Raju Bheemanahalli ◽  
Montana Knight ◽  
Cherryl Quinones ◽  
Colleen J. Doherty ◽  
S. V. Krishna Jagadish

AbstractHigh night temperatures (HNT) are shown to significantly reduce rice (Oryza sativa L.) yield and quality. A better understanding of the genetic architecture of HNT tolerance will help rice breeders to develop varieties adapted to future warmer climates. In this study, a diverse indica rice panel displayed a wide range of phenotypic variability in yield and quality traits under control night (24 °C) and higher night (29 °C) temperatures. Genome-wide association analysis revealed 38 genetic loci associated across treatments (18 for control and 20 for HNT). Nineteen loci were detected with the relative changes in the traits between control and HNT. Positive phenotypic correlations and co-located genetic loci with previously cloned grain size genes revealed common genetic regulation between control and HNT, particularly grain size. Network-based predictive models prioritized 20 causal genes at the genetic loci based on known gene/s expression under HNT in rice. Our study provides important insights for future candidate gene validation and molecular marker development to enhance HNT tolerance in rice. Integrated physiological, genomic, and gene network-informed approaches indicate that the candidate genes for stay-green trait may be relevant to minimizing HNT-induced yield and quality losses during grain filling in rice by optimizing source-sink relationships.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 598
Author(s):  
Nasrein Mohamed Kamal ◽  
Yasir Serag Alnor Gorafi ◽  
Hanan Abdeltwab ◽  
Ishtiag Abdalla ◽  
Hisashi Tsujimoto ◽  
...  

Several marker-assisted selection (MAS) or backcrossing (MAB) approaches exist for polygenic trait improvement. However, the implementation of MAB remains a challenge in many breeding programs, especially in the public sector. In MAB introgression programs, which usually do not include phenotypic selection, undesired donor traits may unexpectedly turn up regardless of how expensive and theoretically powerful a backcross scheme may be. Therefore, combining genotyping and phenotyping during selection will improve understanding of QTL interactions with the environment, especially for minor alleles that maximize the phenotypic expression of the traits. Here, we describe the introgression of stay-green QTL (Stg1–Stg4) from B35 into two sorghum backgrounds through an MAB that combines genotypic and phenotypic (C-MAB) selection during early backcross cycles. The background selection step is excluded. Since it is necessary to decrease further the cost associated with molecular marker assays, the costs of C-MAB were estimated. Lines with stay-green trait and good performance were identified at an early backcross generation, backcross two (BC2). Developed BC2F4 lines were evaluated under irrigated and drought as well as three rainfed environments varied in drought timing and severity. Under drought conditions, the mean grain yield of the most C-MAB-introgression lines was consistently higher than that of the recurrent parents. This study is one of the real applications of the successful use of C-MAB for the development of drought-tolerant sorghum lines for drought-prone areas.


Sign in / Sign up

Export Citation Format

Share Document